From University of Arizona via phys.org: “Exploring strangeness and the primordial Universe”

From University of Arizona

via


phys.org

January 31, 2020
Springer

1
Credit: CC0 Public Domain

Physicists believe that in the Universe’s first ten microseconds free quarks and gluons filled all of spacetime, forming a new phase of matter named ‘quark-gluon plasma’ (QGP)*. Experimental and theoretical work at CERN was instrumental in the discovery of this hot soup of primordial matter, which is recreated today in accelerator-based lab experiments. To discover QGP in such experiments, the observation of exotic ‘strange’ quarks is very important. If QGP is created, strangeness is readily produced through collisions between gluons. In analysis published in The European Physical Journal Special Topics, Dr. Johann Rafelski from The University of Arizona, United States, also working at CERN, presents how our understanding of this characteristic strangeness production signature has evolved over the span of his long career.

Using the style of a ‘personal diary,’ Rafelski firstly reviews and summarises decades of work. Describing leading experimental and theoretical contributions, he recounts how and why strange quarks are produced so efficiently in QGP, and how this behaviour has been exploited for QGP discovery. He also explores strangeness as a tool in the search and discovery of this primordial phase of matter; existent at unimaginably high temperatures and pressures. He then follows the line of research through to the ongoing experimental ultra-high-energy experiments involving head-on collisions between both heavy nuclei and lighter protons, carried out at CERN’s Large Hadron Collider (LHC).

LHC

CERN map


CERN LHC Maximilien Brice and Julien Marius Ordan


CERN LHC particles

THE FOUR MAJOR PROJECT COLLABORATIONS

ATLAS

CERN ATLAS Image Claudia Marcelloni CERN/ATLAS

ALICE

CERN/ALICE Detector


CMS
CERN CMS New

LHCb
CERN LHCb New II

Secondly, Rafelski follows the narrative with a commented set of his own unpublished work, focusing on pioneering theories and QGP discovery. He also includes a selection from the comments of referees offering both criticism and praise for these studies; along with his own present-day perspectives. This review highlights the numerous successes enjoyed by theorists, through decades of tireless effort to explain and understand the primordial QGP. All the same, it shows that many pressing questions remain to be answered. Rafelski continues to contribute to the field through his rich research experience and will undoubtedly inspire new generations of physicists to continue the study of exotic quarks in the primordial Universe.

See the full article here .

*No mention of the work carried out at Brookhaven Lab’s Relativistic Heavy Ion Collider [RHIC].

BNL RHIC Campus


BNL/RHIC


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

About Science X in 100 words

Science X™ is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004 (Physorg.com), Science X’s readership has grown steadily to include 5 million scientists, researchers, and engineers every month. Science X publishes approximately 200 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Science X community members enjoy access to many personalized features such as social networking, a personal home page set-up, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.
Mission 12 reasons for reading daily news on Science X Organization Key editors and writersinclude 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.