From Georgia Institute of Technology: “Georgia Tech Collaborates with IBM to Develop Software Stacks for Quantum Computers”

From Georgia Institute of Technology

January 8, 2020 [Just now in social media.]

John Toon
Research News
(404) 894-6986
jtoon@gatech.edu

1
Georgia Tech has announced an agreement to join the IBM Q Hub at the Oak Ridge National Laboratory to advance the fundamental research and use of quantum computing. (IBM photo)

The Georgia Institute of Technology has announced its agreement to join the IBM Q Hub at the Oak Ridge National Laboratory (ORNL) to help advance the fundamental research and use of quantum computing in building software infrastructure and developing specialized error mitigation techniques. Georgia Tech will have cloud access, via the Oak Ridge Hub, to the world’s largest fleet of universal quantum computing systems for commercial use case exploration and fundamental research.

“Access to IBM machines will allow Georgia Tech to build software infrastructure to make it easier to operate quantum machines, create specialized error mitigation techniques in software – thereby mitigating some of the hardware errors – and develop algorithms and applications for the emerging noisy intermediate-scale quantum (NISQ) computing paradigm,” said Moinuddin Qureshi, a professor in Georgia Tech’s School of Electrical and Computer Engineering. “Access will also allow Georgia Tech researchers to better understand the error patterns in existing quantum computers, which can help with developing the architecture for future machines.”

As part of the ORNL hub, Georgia Tech will join a community of Fortune 500 companies, startups, academic institutions and research labs working to advance quantum computing and explore practical applications. Georgia Tech will leverage IBM’s quantum expertise and resources, Qiskit software and developer tools, and will have cloud-based access to IBM’s Quantum Computation Center. IBM makes available through the cloud 15 of the most-advanced universal quantum computing systems available, including a 53-qubit system – the most qubits of a universal quantum computer commercially available in the industry.

Since the IBM Q Network’s launch in 2017 it has grown to more than 100 organizations, collaborating with IBM and one another to advance fundamental quantum computing research, and the development of practical applications for business and science.

Research is being conducted worldwide to develop a new type of computational device known as a quantum computer, based on the principles of quantum physics. Quantum computers could tackle specialized computational problems such as integer factorization, understanding materials properties or optimization challenges much faster than conventional digital computers. Quantum computers will use one of a number of possible approaches to create quantum bits – units known as qubits – to compute and store data, giving them unique advantages over computers based on silicon transistors.

While the machines have great promise, there are difficult challenges in operating such machines and in writing software that will take advantage of their power, Qureshi said.

The agreement will give Georgia Tech access to IBM’s premium systems, including the 53-qubit quantum computer. “In the regime between 50 and 60 qubits is where quantum machines can potentially do computations that are beyond the capabilities of existing conventional computers,” Qureshi said.

About IBM Q

IBM Q is an industry-first initiative to build commercial universal quantum systems for business and science applications. For more information about IBM’s quantum computing efforts, please visit http://www.ibm.com/ibmq. IBM Q Network™ and IBM Q™ are trademarks of International Business Machines Corporation.

  • Written in collaboration with IBM.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

The Georgia Institute of Technology, commonly referred to as Georgia Tech, is a public research university and institute of technology located in the Midtown neighborhood of Atlanta, Georgia. It is a part of the University System of Georgia and has satellite campuses in Savannah, Georgia; Metz, France; Athlone, Ireland; Shenzhen, China; and Singapore.

The school was founded in 1885 as the Georgia School of Technology as part of Reconstruction plans to build an industrial economy in the post-Civil War Southern United States. Initially, it offered only a degree in mechanical engineering. By 1901, its curriculum had expanded to include electrical, civil, and chemical engineering. In 1948, the school changed its name to reflect its evolution from a trade school to a larger and more capable technical institute and research university.

Today, Georgia Tech is organized into six colleges and contains about 31 departments/units, with emphasis on science and technology. It is well recognized for its degree programs in engineering, computing, industrial administration, the sciences and design. Georgia Tech is ranked 8th among all public national universities in the United States, 35th among all colleges and universities in the United States by U.S. News & World Report rankings, and 34th among global universities in the world by Times Higher Education rankings. Georgia Tech has been ranked as the “smartest” public college in America (based on average standardized test scores).

Student athletics, both organized and intramural, are a part of student and alumni life. The school’s intercollegiate competitive sports teams, the four-time football national champion Yellow Jackets, and the nationally recognized fight song “Ramblin’ Wreck from Georgia Tech”, have helped keep Georgia Tech in the national spotlight. Georgia Tech fields eight men’s and seven women’s teams that compete in the NCAA Division I athletics and the Football Bowl Subdivision. Georgia Tech is a member of the Coastal Division in the Atlantic Coast Conference.