From Ethan Siegel: “These Are The Most Distant Astronomical Objects In The Known Universe”

From Ethan Siegel
Dec 30, 2019

Astronomy’s enduring quest is to go farther, fainter, and more detailed than ever before. Here’s the edge of the cosmic frontier.

1
The distant galaxy MACS1149-JD1 is gravitationally lensed by a foreground cluster, allowing it to be imaged at high resolution and in multiple instruments, even without next-generation technology.

Gravitational Lensing NASA/ESA

This galaxy’s light comes to us from 530 million years after the Big Bang, but the stars within it are at least 280 million years old. It is the second-most distant galaxy with a spectroscopically confirmed distance, placing it 30.7 billion light-years away from us. (ALMA (ESO/NAOJ/NRAO), NASA/ESA HUBBLE SPACE TELESCOPE, W. ZHENG (JHU), M. POSTMAN (STSCI), THE CLASH TEAM, HASHIMOTO ET AL.)

ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

NASA/ESA Hubble Telescope

Astronomers have always sought to push back the viewable distance frontiers.

2
Although there are magnified, ultra-distant, very red and even infrared galaxies in the eXtreme Deep Field, there are galaxies that are even more distant out there than what we’ve discovered in our deepest-to-date views. These galaxies will always remain visible to us, but we will never see them as they are today: 13.8 billion years after the Big Bang. (NASA, ESA, R. BOUWENS AND G. ILLINGWORTH (UC, SANTA CRUZ))

More distant galaxies appear fainter, smaller, bluer, and less evolved overall.

3
Galaxies comparable to the present-day Milky Way are numerous, but younger galaxies that are Milky Way-like are inherently smaller, bluer, more chaotic, and richer in gas in general than the galaxies we see today. For the first galaxies of all, this ought to be taken to the extreme, and remains valid as far back as we’ve ever seen. The exceptions, when we encounter them, are both puzzling and rare. (NASA AND ESA)

Milky Way NASA/JPL-Caltech /ESO R. Hurt. The bar is visible in this image

Laniakea supercluster. From Nature The Laniakea supercluster of galaxies R. Brent Tully, Hélène Courtois, Yehuda Hoffman & Daniel Pomarède at http://www.nature.com/nature/journal/v513/n7516/full/nature13674.html. Milky Way is the red dot.

Individual planets and stars are only known relatively nearby, as our tools cannot take us farther.

Local Group. Andrew Z. Colvin 3 March 2011

4
A massive cluster (left) magnified a distant star known as Icarus more than 2,000 times, making it visible from Earth (lower right) even though it is 9 billion light years away, far too distant to be seen individually with current telescopes. It was not visible in 2011 (upper right). The brightening leads us to believe that this was a blue supergiant star, formally named MACS J1149 Lensed Star 1. (NASA, ESA, AND P. KELLY (UNIVERSITY OF MINNESOTA))

As the 2010s end, here are our presently known most distant astronomical objects.

4
The ultra-distant supernova SN UDS10Wil, shown here, is the farthest type Ia supernova ever discovered, whose light arrives today from a position 17 billion light-years away.

A white dwarf fed by a normal star reaches the critical mass and explodes as a type Ia supernova. Credit: NASA/CXC/M Weiss

Type Ia supernovae are used as distance indicators because of their standard intrinsic brightnesses, and are some of our strongest evidence for the accelerated expansion best explained by dark energy.

Standard Candles to measure age and distance of the universe from supernovae NASA

(NASA, ESA, A. RIESS (STSCI AND JHU), AND D. JONES AND S. RODNEY (JHU))

The farthest type Ia supernova, our most distant “standard candle” for probing the Universe, is SN UDS10Wil, located 17 billion light-years (Gly) away.

4
This illustration of superluminous supernova SN 1000+0216, the most distant supernova ever observed at a redshift of z=3.90, from when the Universe was just 1.6 billion years old, is the current record-holder for individual supernovae. Unlike SN UDS10Wil, this supernova is a Type II (core collapse) supernova, and may have formed via the pair instability mechanism, which would explain its extraordinarily large intrinsic brightness. (ADRIAN MALEC AND MARIE MARTIG (SWINBURNE UNIVERSITY))

The most distant supernova of all, 2012’s superluminous SN 1000+0216, occurred 23 Gly away.

6
The most distant X-ray jet in the Universe, from quasar GB 1428, sends us light from when the Universe was a mere 1.25 billion years old: less than 10% its current age. This jet comes from electrons heating CMB photons, and is over 230,000 light-years in extent: approximately double the size of the Milky Way. (X-RAY: NASA/CXC/NRC/C.CHEUNG ET AL; OPTICAL: NASA/STSCI; RADIO: NSF/NRAO/VLA)

NASA/Chandra X-ray Telescope

NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

The most distant quasar jet, revealed by GB 1428+4217’s X-rays, is 25.4 Gly distant.

7
This image of ULAS J1120+0641, a very distant quasar powered by a black hole with a mass two billion times that of the Sun, was created from images taken from surveys made by both the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey.

SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude2,788 meters (9,147 ft)


UKIRT, located on Mauna Kea, Hawai’i, USA as part of Mauna Kea Observatory,4,207 m (13,802 ft) above sea level

The quasar appears as a faint red dot close to the centre. This quasar was the most distant one known from 2011 until 2017, and is seen as it was just 745 million years after the Big Bang. It is the most distant quasar with a visual image available to be viewed by the public. (ESO/UKIDSS/SDSS)

The first discovered object whose light exceeds 13 billion years in age, quasar ULAS J1120+0641, is 28.8 Gly away.

9
This artist’s concept shows the most distant quasar and the most distant supermassive black hole powering it. At a redshift of 7.54, ULAS J1342+0928 corresponds to a distance of some 29.32 billion light-years; it is the most distant quasar/supermassive black hole ever discovered. Its light arrives at our eyes today, in the radio part of the spectrum, because it was emitted just 686 million years after the Big Bang. (ROBIN DIENEL/CARNEGIE INSTITUTION FOR SCIENCE)

However, quasar ULAS J1342+0928 is even farther at 29.32 Gly: our most distant black hole.

10
This illustration of the most distant gamma-ray burst ever detected, GRB 090423, is thought to be typical of most fast gamma-ray bursts. When one or two objects violently form a black hole, such as from a neutron star merger, a brief burst of gamma rays followed by an infrared afterglow (when we’re lucky) allows us to learn more about these events. The gamma rays from this event lasted just 10 seconds, but Nial Tanvir and his team found an infrared afterglow using the UKIRT telescope just 20 minutes after the burst, allowing them to determine a redshift (z=8.2) and distance (29.96 billion light-years) to great precision. (ESO/A. ROQUETTE)

Gamma-ray bursts exceed even that; GRB 090423’s verified light comes from 29.96 Gly away in the distant Universe, while GRB 090429B might’ve been even farther.

9
Here, candidate galaxy UDFj-39546284 appears very faint and red, and from the colors it displays, it has an inferred redshift of 10, giving it an age below 500 million years and a distance greater than 31 billion light-years. Without spectroscopic confirmation, however, this and similar galaxies cannot reliably be said to have a known distance; more data is needed, as photometric redshifts are notoriously unreliable. (NASA, ESA, G. ILLINGWORTH (UNIVERSITY OF CALIFORNIA, SANTA CRUZ), R. BOUWENS (UNIVERSITY OF CALIFORNIA, SANTA CRUZ, AND LEIDEN UNIVERSITY) AND THE HUDF09 TEAM)

Ultra-distant galaxy candidates abound, including SPT0615-JD, MACS0647-JD, and UDFj-39546284, all lacking spectroscopic confirmation.

11
The most distant galaxy ever discovered in the known Universe, GN-z11, has its light come to us from 13.4 billion years ago: when the Universe was only 3% its current age: 407 million years old. The distance from this galaxy to us, taking the expanding Universe into account, is an incredible 32.1 billion light-years. (NASA, ESA, AND G. BACON (STSCI))

The most distant galaxy of all is GN-z11, located 32.1 Gly away.

11
The James Webb Space Telescope vs. Hubble in size (main) and vs. an array of other telescopes (inset) in terms of wavelength and sensitivity. It should be able to see the truly first galaxies, even the ones that no other observatory can see. Its power is truly unprecedented. (NASA / JWST SCIENCE TEAM)

NASA/ESA/CSA Webb Telescope annotated

With the 2020s promising revolutionary new observatories, these records may all soon fall.

12
Our deepest galaxy surveys can reveal objects tens of billions of light years away, but there are more galaxies within the observable Universe we still have yet to reveal between the most distant galaxies and the cosmic microwave background [CMB], including the very first stars and galaxies of all.

CMB per ESA/Planck

It is possible that the coming generation of telescopes will break all of our current distance records. (SLOAN DIGITAL SKY SURVEY (SDSS))

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

“Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan