From Stanford University Engineering: “An artificial retina that could help restore sight to the blind”

From Stanford University Engineering

October 10, 2019
Andrew Myers

A new technique helps overcome one major barrier: heat.

1
Without this advance, the chips required to build an artificial retina would burn human eye tissue. | Unsplash/Createria, Pixabay/DavidZydd

For more than a decade, researchers have been working to create artificial digital retinas that can be implanted in the eye to allow the blind to see again. Many challenges stand in the way, but researchers at Stanford University may have found the key to solving one of the most vexing: heat. The artificial retina requires a very small computer chip with many metal electrodes poking out. The electrodes first record the activity of the neurons around them to create a map of cell types. This information is then used to transmit visual data from a camera to the brain. Unfortunately, the eye produces so much data during recording that the electronics get too darn hot.

“The chips required to build a high-quality artificial retina would essentially fry the human tissue they are trying to interface with,” says E.J. Chichilnisky, a professor in the Neurosurgery and Ophthalmology departments, who is on Stanford’s artificial retina team.

Members of the team, including Chichilnisky and his collaborators in Stanford’s Electrical Engineering and Computer Science departments, recently announced they have devised a way to solve that problem by significantly compressing the massive amounts of visual data that all those neurons in the eye create. They discuss their advance in a study published in the IEEE Transactions on Biomedical Circuits and Systems.

To convey visual information, neurons in the retina send electrical impulses, known as spikes, to the brain. The problem is that the digital retina needs to record and decode those spikes to understand the properties of the neurons, but that generates a lot of heat in the digitization process, even with only a few hundred electrodes used in today’s prototypes. The first true digital retina will need to have tens of thousands of such electrodes, complicating the issue further.

Boris Murmann, a professor of electrical engineering on the retina project, says the team found a way to extract the same level of visual understanding using less data. By better understanding which signal samples matter and which can be ignored, the team was able to reduce the amount of data that has to be processed. It’s a bit like being at a party trying to extract a single coherent conversation amid the din of a crowded room — a few voices matter a lot, but most are noise and can be ignored.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

Stanford Engineering has been at the forefront of innovation for nearly a century, creating pivotal technologies that have transformed the worlds of information technology, communications, health care, energy, business and beyond.

The school’s faculty, students and alumni have established thousands of companies and laid the technological and business foundations for Silicon Valley. Today, the school educates leaders who will make an impact on global problems and seeks to define what the future of engineering will look like.
Mission

Our mission is to seek solutions to important global problems and educate leaders who will make the world a better place by using the power of engineering principles, techniques and systems. We believe it is essential to educate engineers who possess not only deep technical excellence, but the creativity, cultural awareness and entrepreneurial skills that come from exposure to the liberal arts, business, medicine and other disciplines that are an integral part of the Stanford experience.

Our key goals are to:

Conduct curiosity-driven and problem-driven research that generates new knowledge and produces discoveries that provide the foundations for future engineered systems
Deliver world-class, research-based education to students and broad-based training to leaders in academia, industry and society
Drive technology transfer to Silicon Valley and beyond with deeply and broadly educated people and transformative ideas that will improve our society and our world.

The Future of Engineering

The engineering school of the future will look very different from what it looks like today. So, in 2015, we brought together a wide range of stakeholders, including mid-career faculty, students and staff, to address two fundamental questions: In what areas can the School of Engineering make significant world‐changing impact, and how should the school be configured to address the major opportunities and challenges of the future?

One key output of the process is a set of 10 broad, aspirational questions on areas where the School of Engineering would like to have an impact in 20 years. The committee also returned with a series of recommendations that outlined actions across three key areas — research, education and culture — where the school can deploy resources and create the conditions for Stanford Engineering to have significant impact on those challenges.

Stanford University

Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

Stanford University Seal