From PPPL- “Today’s forecast: How to predict crucial plasma pressure in future fusion facilities”

From PPPL

September 20, 2019
John Greenwald

1
Physicist Michael Churchill. (Photo by Elle Starkman/Office of Communications)

A key requirement for future facilities that aim to capture and control on Earth the fusion energy that drives the sun and stars is accurate predictions of the pressure of the plasma — the hot, charged gas that fuels fusion reactions inside doughnut-shaped tokamaks that house the reactions. Central to these predictions is forecasting the pressure that the scrape-off layer, the thin strip of gas at the edge of the plasma, exerts on the divertor — the device that exhausts waste heat from fusion reactions.

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed new insights into the physics governing the balance of pressure in the scrape-off layer. This balance must ensure that the pressure of the plasma throughout the tokamak is high enough to produce a largely self-heating fusion reaction. The balance must also limit the potentially damaging impact of heat and plasma particles that strike the divertor and other plasma-facing components of the tokamak.

“Previous simple assumptions about the balance of pressure in the scrape-off layer are incomplete,” said PPPL physicist Michael Churchill, lead author of a Nuclear Fusion paper that describes the new findings. “The codes that simulate the scrape-off layer have often thrown away important aspects of the physics, and the field is starting to recognize this.”

Fusion, the power that drives the sun and stars, is the fusing of light elements in the form of plasma — the hot, charged state of matter composed of free electrons and atomic nuclei — that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

Key factors

Churchill and PPPL colleagues determined the key factors behind the pressure balance by running the state-of-the-art XGCa computer code on the Cori and Edison supercomputers at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility.

NERSC at LBNL

NERSC Cray Cori II supercomputer, named after Gerty Cori, the first American woman to win a Nobel Prize in science

NERSC Hopper Cray XE6 supercomputer, named after Grace Hopper, One of the first programmers of the Harvard Mark I computer

NERSC Cray XC30 Edison supercomputer

NERSC GPFS for Life Sciences


The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

NERSC PDSF computer cluster in 2003.

PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

Future:

Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supeercomputer

NERSC is a DOE Office of Science User Facility.

The code treats plasma at a detailed kinetic — or particle motion— level rather than as a fluid.

Among key features found was the impact of the bulk drift of ions, an impact that previous codes have largely ignored. Such drifts “can play an integral role” the authors wrote, and “are very important to take into account.”

Also seen to be important in the momentum or pressure balance were the kinetic particle effects due to ions having different temperatures depending on their direction. Since the temperature of ions is hard to measure in the scrape-off layer, the paper says, “increased diagnostic efforts should be made to accurately measure the ion temperature and flows and thus enable a better understanding of the role of ions in the SOL.”

The new findings could improve understanding of the scrape-off layer pressure at the divertor, Churchill said, and could lead to accurate forecasts for the international ITER experiment under construction in France and other next-generation tokamaks.

ITER Tokamak in Saint-Paul-lès-Durance, which is in southern France

Support for this work comes from the DOE Office of Science under the SciDAC Center for High Fidelity Boundary Plasma Simulation (HBPS). The research used resources of the National Energy Research Scientific Computing Center (NERSC). Coauthors of the paper were PPPL physicists C.S Chang, Seung-Ho Ku, Robert Hager, Rajesh Maingi, Daren Stotler and Hong Qin.

See the full article here .


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition


PPPL campus

Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.http://www.energy.gov.

Princeton University campus