From Harvard-Smithsonian Center for Astrophysics: “Announcement of the Next Generation Event Horizon Telescope Design Program”

Harvard Smithsonian Center for Astrophysics


From Harvard-Smithsonian Center for Astrophysics

September 20, 2019
Tyler Jump
Public Affairs
Center for Astrophysics | Harvard & Smithsonian
+1 617-495-7462
tyler.jump@cfa.harvard.edu

1

The National Science Foundation has just announced the award of a $12.7M grant to architect and design a next-generation Event Horizon Telescope (ngEHT) to carry out a program of transformative black hole science.

Led by Principal Investigator Shep Doeleman at the Center for Astrophysics | Harvard and Smithsonian (CfA), the new ngEHT award will fund design and prototyping efforts by researchers at several US institutes. These include Dr. Gopal Narayanan at University of Massachusetts, Amherst, Dr. Vincent Fish at the MIT Haystack Observatory, and Drs. Katherine L. (Katie) Bouman and Gregg Hallinan at Caltech. At the CfA, Drs. Michael Johnson, Jonathan Weintroub and Lindy Blackburn are co-Principal Investigators of the ngEHT program.

On April 10th, 2019, the International Event Horizon Telescope Collaboration released the first image of a supermassive black hole. A bright ring of emission at the heart of the Virgo A galaxy revealed a black hole, known as Messier 87, that has the mass of 6.5 billion Suns.

Messier 87 supermassive black hole from the EHT

Einstein’s theory of gravity passed this new test in spectacular fashion in this extreme cosmic laboratory. For this work, the EHT Collaboration will receive the Breakthrough Prize in Fundamental Physics this November.

Black holes, objects with gravity so strong that light cannot escape, are now accessible to direct imaging. More precise tests of gravity can now be contemplated, and the processes by which supermassive black holes energize the brightness and dynamics of most galaxy cores can be studied in detail. The next-generation EHT (ngEHT) will sharpen the focus on black holes, and let researchers move from still-imagery to real-time videos of space-time at the event horizon.

“As with all great discoveries, the first black hole image was just the beginning,” says Doeleman, Founding Director of the EHT. “Imagine being able to see a black hole evolve before your eyes. The ngEHT will give us front-row seats to one of the Universe’s most spectacular shows.”

Sparked by this major investment, the ngEHT is expected to attract additional international support and participation by the broad EHT community. The ngEHT award is aimed at solving the formidable technical and algorithmic challenges required to significantly expand the capability of the EHT.

The first Messier 87 black hole images were made using the technique of Very Long Baseline Interferometry (VLBI), in which an array of radio dishes around the world is combined to form an Earth-sized virtual telescope.

Event Horizon Telescope Array

Arizona Radio Observatory
Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

ESO/APEX
Atacama Pathfinder EXperiment

CARMA Array no longer in service
Combined Array for Research in Millimeter-wave Astronomy (CARMA)

Atacama Submillimeter Telescope Experiment (ASTE)
Atacama Submillimeter Telescope Experiment (ASTE)

Caltech Submillimeter Observatory
Caltech Submillimeter Observatory (CSO)

IRAM 30m Radio telescope, on Pico Veleta in the Spanish Sierra Nevada,, Altitude 2,850 m (9,350 ft)


Institut de Radioastronomie Millimetrique (IRAM) 30m

James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

Large Millimeter Telescope Alfonso Serrano
Large Millimeter Telescope Alfonso Serrano

CfA Submillimeter Array Mauna Kea, Hawaii, USA, Altitude 4,080 m (13,390 ft)

Submillimeter Array Hawaii SAO

ESO/NRAO/NAOJ ALMA Array
ESO/NRAO/NAOJ ALMA Array, Chile

South Pole Telescope SPTPOL
South Pole Telescope SPTPOL

Future Array/Telescopes

IRAM NOEMA in the French Alps on the wide and isolated Plateau de Bure at an elevation of 2550 meters, the telescope currently consists of ten antennas, each 15 meters in diameter.interferometer, Located in the French Alpes on the wide and isolated Plateau de Bure at an elevation of 2550 meters

NSF CfA Greenland telescope


Greenland Telescope

ARO 12m Radio Telescope, Kitt Peak National Observatory, Arizona, USA, Altitude 1,914 m (6,280 ft)


ARO 12m Radio Telescope

By exploring new dish designs and locations, the ngEHT effort will plan the architecture for a new array with roughly double the number of sites worldwide.

“The EHT observations demand unusually dry atmospheric conditions typically found at high altitudes. Identifying sites that meet this demand and deploying new dishes will vastly improve the EHT array’s black hole imaging ability,” says Dr. Jonathan Weintroub.

In addition to new dishes, the ngEHT will incorporate an existing telescope at Caltech’s Owen’s Valley Radio Observatory (OVRO) and will upgrade the Large Millimeter Telescope Alfonso Serrano (LMT) in Mexico. “With its large aperture and central geographic location, the LMT is crucial to the next generation EHT effort. Planned enhancements to the LMT’s performance using MSRI funds will improve the EHT sensitivity over long observing campaigns,” notes Dr. Gopal Narayanan.

Caltech Owens Valley Radio Observatory, located near Big Pine, California (US) in Owens Valley, Altitude1,222 m (4,009 ft)

New technologies will, in turn, allow the ngEHT to expand the swath of radio frequencies it uses to photograph the event horizon. High speed recording systems that capture radio waves from the black hole will transfer data to central locations where they can be merged in a process that is analogous to the mirror in an optical telescope reflecting light to a single focus.

“Currently, the EHT records about 10 PetaBytes of data each session,” according to Dr. Vincent Fish. “With planned higher data rates and the inclusion of new observatories, EHT data volumes could exceed 100 PetaBytes. Part of this project will be to investigate how to leverage advances in commercial technology to cost-effectively record and transport such a large volume of data.”

The process of combining and analyzing data from around the globe demands high-performance computers and software that align signals from each EHT site to a fraction of a trillionth of a second. “The ngEHT pushes the boundaries in VLBI data complexity, along with the demands of models that seamlessly link the antennas together into a single Earth-size telescope,” says Dr. Lindy Blackburn.

By filling in the Earth-sized lens with many new geographic locations, the ngEHT program will be able to harness new powerful algorithms to turn the incredible data volumes into images and even movies.

“Our own Milky Way is host to a supermassive black hole that evolves dramatically over the course of a night. We are developing new methods, which incorporate emerging ideas from machine learning and computational imaging, in order to make the very first movies of gas spiraling towards an event horizon,” says Dr. Katie Bouman

The goal of the EHT is to address some of the greatest mysteries and deepest questions about black holes.

“Despite decades of study, some of the most basic questions about black holes remain untested,” says Dr. Michael Johnson. “With the ngEHT, we will be able to study how black holes act as powerful cosmic engines, energizing a swirling bath of infalling plasma and efficiently pouring unimaginable amounts of energy into narrow jets that pierce entire galaxies.”

Doeleman is optimistic about the prospects of new discoveries with the ngEHT. “A decade ago we predicted we would be able to see a black hole. Now we estimate that over a billion people have seen the first image, and the Breakthrough Prize shows the impact it is having across the sciences. Through the ngEHT we are setting our sights high again, aiming to bring humanity even closer to the event horizon.”

Learn more here: https://www.nsf.gov/awardsearch/showAward?AWD_ID=1935980

From The National Science Foundation:

The Event Horizon Telescope (EHT) recently made the first direct image of a black hole, an image seen by billions of people around the world. Both the scientific community and the general the public were galvanized by this result. The program funded here is a design project to plan a greatly enhanced EHT (EHT-II), one with 7-8 additional telescopes placed around the world in locations designed to maximize imaging speed, dynamic range, and fidelity. The much faster snapshot mode of this combination will allow rapid tracking of changes near the black hole event horizon, allowing for the first time ever the creation of movies directly showing the dynamics of extreme gravity environments. The greater imaging power will also address long-standing fundamental questions such as how matter is blasted away from a black hole in the form of relativistic jets. Broader impacts include a National Air and Space Museum exhibit, and training of students in instrumentation development.

Instead of relying on existing large facilities to form the Very Long Baseline Interferometry (VLBI) array, as the existing EHT has done, this design program will consider engineering and placement of small-diameter dishes that optimally fill out an Earth sized virtual telescope, tailored precisely for science objectives. By roughly doubling the number of dishes in the array through cost-effective use of small dishes, the EHT-II will be capable of making the first real-time movies of supermassive black holes. The Large Millimeter Telescope in Mexico, in collaboration with the University of Massachusetts Amherst, will serve as a testbed for advanced dual frequency receivers that will be developed as part of this design initiative.

This project is supported by the Foundation-wide Mid-scale Research Infrastructure program. The project will be managed by the Division of Astronomical Sciences within the Directorate for Mathematics and Physical Sciences.

This award reflects NSF’s statutory mission and has been deemed worthy of support through evaluation using the Foundation’s intellectual merit and broader impacts review criteria.

See the full article here .


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.