From University of Illinois and U Hamburg, via Science Alert: “An Elusive Particle That Acts as Its Own Antiparticle Has Just Been Imaged”

U Illinois bloc

From University of Illinois Chicago

and

2
U Hamburg

via

30 JULY 2019
MICHELLE STARR

3
(Palacio-Morales et al. Science Advances, 2019)

New images of the Majorana fermion have brought physicists a step closer to harnessing the mysterious objects for quantum computing.

These strange objects – particles that acts as their own antiparticles – have a vast as-yet untapped potential to act as qubits, the quantum bits that are the basic units of information in a quantum computer.

IBM iconic image of Quantum computer

They’re equivalent to binary bits in a traditional computer. But, where regular bits can represent a 1 or a 0, qubits can be either 1, 0 or both at the same time, a state known as quantum superposition. Quantum superposition is actually pretty hard to maintain, although we’re getting better at it.

This is where Majorana quasiparticles come in. These are excitations in the collective behaviour of electrons that act like Majorana fermions, and they have a number of properties that make them an attractive candidate for qubits.

Normally, a particle and an antiparticle will annihilate each other, but entangled Majorana quasiparticles produced by splitting an electron into two halves are surprisingly stable. In addition, they remember how they’ve been moved around, a property that could be exploited for storing information.

But the quasiparticles have to remain separated by a sufficient distance. This can be done with a special nanowire, but a team of physicists at the University of Illinois at Chicago and the University of Hamburg in Germany have taken a different approach.

They’ve started with a rhenium superconductor, a material that conducts electricity with zero resistance when supercooled to around 6 Kelvin (–267°C; 449°F).

On top of these superconductors, the researchers deposited nanoscale islands of single layers of magnetic iron atoms. This creates what is known as a topological superconductor – that is, a superconductor that contains a topological knot.

“This topological knot is similar to the hole in a donut,” explained physicist Dirk Morr of the University of Illinois at Chicago.

“You can deform the donut into a coffee mug without losing the hole, but if you want to destroy the hole, you have to do something pretty dramatic, such as eating the donut.”

When electrons flow through the superconductor, the team predicted that Majorana fermions would appear in a one-dimensional mode at the edges of the iron islands – around the so-called donut hole. And that by using a scanning tunneling microscope – an instrument used for imaging surfaces at the atomic level – they would see this visualised as a bright line.

Sure enough, a bright line showed up.

It’s not the first time Majorana fermions have been imaged, but it does represent a step forward. And just last month, a different team of researchers revealed that they had been able to turn Majorana quasiparticles on and off.

But being able to visualise these particles, the researchers said, brings us closer to using them as qubits.

“The next step will be to figure out how we can quantum engineer these Majorana qubits on quantum chips and manipulate them to obtain an exponential increase in our computing power,” Morr said.

The research has been published in Science Advances.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

4

The University

Universität Hamburg is the largest institution for research and education in northern Germany. As one of the country’s largest universities, we offer a diverse range of degree programs and excellent research opportunities. The University boasts numerous interdisciplinary projects in a broad range of fields and an extensive partner network of leading regional, national, and international higher education and research institutions.
Sustainable science and scholarship

Universität Hamburg is committed to sustainability. All our faculties have taken great strides towards sustainability in both research and teaching.
Excellent research

As part of the Excellence Strategy of the Federal and State Governments, Universität Hamburg has been granted clusters of excellence for 4 core research areas: Advanced Imaging of Matter (photon and nanosciences), Climate, Climatic Change, and Society (CliCCS) (climate research), Understanding Written Artefacts (manuscript research) and Quantum Universe (mathematics, particle physics, astrophysics, and cosmology).

An equally important core research area is Infection Research, in which researchers investigate the structure, dynamics, and mechanisms of infection processes to promote the development of new treatment methods and therapies.
Outstanding variety: over 170 degree programs

Universität Hamburg offers approximately 170 degree programs within its eight faculties:

Faculty of Law
Faculty of Business, Economics and Social Sciences
Faculty of Medicine
Faculty of Education
Faculty of Mathematics, Informatics and Natural Sciences
Faculty of Psychology and Human Movement Science
Faculty of Business Administration (Hamburg Business School).

Universität Hamburg is also home to several museums and collections, such as the Zoological Museum, the Herbarium Hamburgense, the Geological-Paleontological Museum, the Loki Schmidt Garden, and the Hamburg Observatory.
History

Universität Hamburg was founded in 1919 by local citizens. Important founding figures include Senator Werner von Melle and the merchant Edmund Siemers. Nobel Prize winners such as the physicists Otto Stern, Wolfgang Pauli, and Isidor Rabi taught and researched at the University. Many other distinguished scholars, such as Ernst Cassirer, Erwin Panofsky, Aby Warburg, William Stern, Agathe Lasch, Magdalene Schoch, Emil Artin, Ralf Dahrendorf, and Carl Friedrich von Weizsäcker, also worked here.
Subnavigation

U Illinois campus

The University of Illinois at Urbana-Champaign community of students, scholars, and alumni is changing the world.

With our land-grant heritage as a foundation, we pioneer innovative research that tackles global problems and expands the human experience. Our transformative learning experiences, in and out of the classroom, are designed to produce alumni who desire to make a significant, societal impact.

The University of Illinois at Chicago (UIC) is a public research university in Chicago, Illinois. Its campus is in the Near West Side community area, adjacent to the Chicago Loop. The second campus established under the University of Illinois system, UIC is also the largest university in the Chicago area, having approximately 30,000 students[9] enrolled in 15 colleges.

UIC operates the largest medical school in the United States with research expenditures exceeding $412 million and consistently ranks in the top 50 U.S. institutions for research expenditures.[10][11][12] In the 2019 U.S. News & World Report’s ranking of colleges and universities, UIC ranked as the 129th best in the “national universities” category.[13] The 2015 Times Higher Education World University Rankings ranked UIC as the 18th best in the world among universities less than 50 years old.[14]

UIC competes in NCAA Division I Horizon League as the UIC Flames in sports. The Credit Union 1 Arena (formerly UIC Pavilion) is the Flames’ venue for home games.