From Lawrence Livermore National Laboratory: “Under pressure: New device’s 1.6 billion atmospheres per second assists impact studies”

From Lawrence Livermore National Laboratory

July 11, 2019

Anne M Stark

The new dynamic diamond anvil cell (dDAC) at the Extreme Conditions Beamline (ECB) at DESY’s X-ray source PETRA III. Image courtesy of Hanns-Peter Liermann/DESY

A new super-fast high-pressure device at DESY’s PETRA III X-ray light source allows scientists to simulate and study earthquakes and meteorite impacts more realistically in the lab.


The new-generation dynamic diamond anvil cell (dDAC), developed by scientists from Lawrence Livermore National Laboratory (LLNL), Deutsches Elektronen-Synchroton (DESY), the European Synchrotron Radiation Facility (ESRF) and the universities of Oxford, Bayreuth and Frankfurt/Main, compresses samples faster than any similar device before. The instrument can turn up the pressure at a record rate of 1.6 billion atmospheres per second and can be used for a wide range of dynamic high-pressure studies. The developers present their new device, that has already proved its capabilities in various materials experiments, in the journal Review of Scientific Instruments.

“For more than half a century, the diamond anvil cell or DAC has been the primary tool to create static high pressures to study the physics and chemistry of materials under those extreme conditions — for example, to explore the physical properties of materials at the center of the Earth at 3.5 million atmospheres,” said lead author Zsolt Jenei from LLNL.

To simulate fast dynamic processes like earthquakes and asteroid impacts more realistically with high compression rates in the lab, Jenei’s team, in collaboration with DESY scientists, developed a new generation of dynamically driven diamond anvil cell (dDAC), inspired by the pioneering original LLNL design, and coupled it with the new fast X-ray diffraction setup of the Extreme Conditions Beamline P02.2 at PETRA III.

The new cell consists of two small modified brilliant diamonds that are pushed together by a powerful piezo electric drive. Thanks to improvements like the much stronger piezo actuators and fast, high peak current amplifiers, the new device is capable of rapidly compressing the tiny samples between the diamond anvils more than a thousand times faster than previous generation dynamic diamond anvil cells. “One unique aspect fo the dDAC technique is that it also allows us to characterize the response of a sample under well controlled fast decompression,” said co-author Earl O’Bannon from LLNL.

To study the changes in physical properties of materials under high pressure, scientists shine X-rays on the small samples and record the way the X-rays are diffracted by the material. These diffraction patterns allow scientists to determine the structure of the material. However, to take snapshots of high-speed dynamic processes, the X-ray flash needs to be bright enough and the camera — the detector — must be fast enough.

“For almost 10 years since the first invention of the dDAC at our Laboratory, it has been extremely difficult to conduct fast diffraction experiments because of the lack of photon flux and, more important, fast and highly sensitive high-energy X-ray diffraction detectors,” Jenei said. Only with the advent of the extremely bright third-generation X-ray sources, such as PETRA III, and the development of highly sensitive cameras, such as the gallium-arsenide (GaAs) Lambda detector, invented by the DESY detector group, did it become possible to collect diffraction images with the adequate short exposure times and temporal resolution.”

The Extreme Conditions Beamline (ECB) at DESY has the world’s first two GaAs Lambda detectors. “By triggering them with a delay of 0.25 milliseconds, we are able to collect up to 4,000 frames per second,” said Hanns-Peter Liermann, the beamline scientist in charge of the ECB. The detectors were funded through a joint research project awarded by the German Federal Ministry of Education and Research BMBF to the Goethe University Frankfurt, where Björn Winkler is the principal investigator.

Researchers working on the project have demonstrated the performance and versatility of the experimental setup with fast compression studies of heavy metals such as gold and bismuth, as well as light compounds such as ice (H2O) and planetary materials such as ferropericlase. While conducting fast diffraction experiments on gold, the team demonstrated an increase in pressure from 1,000 atmospheres to 1.4 million atmospheres in only 2.5 milliseconds (thousandth of a second), resulting in a maximum compression rate of 160 terapascals per second (a terapascal is a measure of pressure). During this extremely short time, the detectors collected eight diffraction patterns across the complete compression path.

“We believe that with the existing setup we can improve the compression rates to maybe thousands of terapascals per second,” Liermann said. However, this will need even brighter X-ray flashes and still faster cameras such as the planned upgrade of PETRA III to a next-generation X-ray source PETRA IV and the High Energy Density experimental station (HED) at the European X-ray laser European XFEL, where DESY is participating in building a dDAC setup as part of the Helmholtz International Beamline for Extreme Fields (HIBEF) consortium.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

LLNL Campus

Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.


DOE Seal