From Fermi National Accelerator Lab: “Physicists are out to unlock the muon’s secret”

FNAL Art Image
FNAL Art Image by Angela Gonzales

From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

June 13, 2019
Sabine Hossenfelder

FNAL Muon G-2 studio

Physicists count 25 elementary particles that, for all we presently know, cannot be divided any further. They collect these particles and their interactions in what is called the Standard Model of particle physics.

Standard Model of Particle Physics

But the matter around us is made of merely three particles: up and down quarks (which combine to protons and neutrons, which combine to atomic nuclei) and electrons (which surround atomic nuclei). These three particles are held together by a number of exchange particles, notably the photon and gluons.

What’s with the other particles? They are unstable and decay quickly. We only know of them because they are produced when other particles bang into each other at high energies, something that happens in particle colliders and when cosmic rays hit Earth’s atmosphere. By studying these collisions, physicists have found out that the electron has two bigger brothers: The muon (μ) and the tau (τ).

The muon and the tau are pretty much the same as the electron, except that they are heavier. Of these two, the muon has been studied closer because it lives longer – about 2 x 10^-6 seconds.

The muon turns out to be… a little odd.

Physicists have known for a while, for example, that cosmic rays produce more muons than expected. This deviation from the predictions of the standard model is not hugely significant, but it has stubbornly persisted. It has remained unclear, though, whether the blame is on the muons, or the blame is on the way the calculations treat atomic nuclei.

Next, the muon (like the electron and tau) has a partner neutrino, called the muon-neutrino. The muon neutrino also has some anomalies associated with it. No one currently knows whether those are real or measurement errors.

The Large Hadron Collider has seen a number of slight deviations from the predictions of the standard model which go under the name lepton anomaly. They basically tell you that the muon isn’t behaving like the electron, which (all other things equal) really it should. These deviations may just be random noise and vanish with better data. Or maybe they are the real thing.

And then there is the gyromagnetic moment of the muon, usually denoted just g. This quantity measures how muons spin if you put them into a magnetic field. This value should be 2 plus quantum corrections, and the quantum corrections (the g-2) you can calculate very precisely with the standard model. Well, you can if you have spent some years learning how to do that because these are hard calculations indeed. Thing is though, the result of the calculation doesn’t agree with the measurement.

This is the so-called muon g-2 anomaly, which we have known about since the 1960s when the first experiments ran into tension with the theoretical prediction. Since then, both the experimental precision as well as the calculations have improved, but the disagreement has not vanished.

The most recent experimental data comes from a 2006 experiment at Brookhaven National Lab, and it placed the disagreement at 3.7σ. That’s interesting for sure, but nothing that particle physicists get overly excited about.

A new experiments is now following up on the 2006 result: The muon g-2 experiment at Fermilab. The collaboration projects that (assuming the mean value remains the same) their better data could increase the significance to 7σ, hence surpassing the discovery standard in particle physics (which is somewhat arbitrarily set to 5σ).

For this experiment, physicists first produce muons by firing protons at a target (some kind of solid). This produces a lot of pions (composites of two quarks) which decay by emitting muons. The muons are then collected in a ring equipped with magnets in which they circle until they decay. When the muons decay, they produce two neutrinos (which escape) and a positron that is caught in a detector. From the direction and energy of the positron, one can then infer the magnetic moment of the muon.

The Fermilab g-2 experiment, which reuses parts of the hardware from the earlier Brookhaven experiment, is already running and collecting data. In a recent paper [ https://arxiv.org/abs/1905.00497 ], Alexander Keshavarzi, on behalf of the collaboration reports they successfully completed the first physics run last year. He writes we can expect a publication of the results from the first run in late 2019. After some troubleshooting (something about an underperforming kicker system), the collaboration is now in the second run.

Another experiment to measure more precisely the muon g-2 is underway in Japan, at the J-PARC muon facility. This collaboration too is well on the way.

J-PARC Facility Japan Proton Accelerator Research Complex , located in Tokai village, Ibaraki prefecture, on the east coast of Japan

While we don’t know exactly when the first data from these experiments will become available, it is clear already that the muon g-2 will be much talked about in the coming years. At present, it is our best clue for physics beyond the standard model. So, stay tuned.

See the full article here.


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

FNAL Icon

Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.

FNAL MINERvA front face Photo Reidar Hahn

FNAL DAMIC

FNAL Muon g-2 studio

FNAL Short-Baseline Near Detector under construction

FNAL Mu2e solenoid

Dark Energy Camera [DECam], built at FNAL

FNAL DUNE Argon tank at SURF

FNAL/MicrobooNE

FNAL Don Lincoln

FNAL/MINOS

FNAL Cryomodule Testing Facility

FNAL MINOS Far Detector in the Soudan Mine in northern Minnesota

FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

FNAL/NOvA experiment map

FNAL NOvA Near Detector

FNAL ICARUS

FNAL Holometer