From ALMA: “Cool, Nebulous Ring around Milky Way’s Supermassive Black Hole”

ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres


5 June, 2019
Nicolás Lira
Education and Public Outreach Coordinator
Joint ALMA Observatory, Santiago – Chile
Phone: +56 2 2467 6519
Cell phone: +56 9 9445 7726

Masaaki Hiramatsu
Education and Public Outreach Officer, NAOJ Chile
, Tokyo – Japan
Phone: +81 422 34 3630

Calum Turner
ESO Assistant Public Information Officer
Garching bei München, Germany
Phone: +49 89 3200 6670

Charles E. Blue
Public Information Officer
National Radio Astronomy Observatory Charlottesville, Virginia – USA
Phone: +1 434 296 0314
Cell phone: +1 202 236 6324

Artist impression of ring of cool, interstellar gas surrounding the supermassive black hole at the center of the Milky Way. New ALMA observations reveal this structure for the first time. Credit: NRAO/AUI/NSF; S. Dagnello

ALMA image of the disk of cool hydrogen gas flowing around the supermassive black hole at the center of our galaxy. The colors represent the motion of the gas relative to Earth: the red portion is moving away, so the radio waves detected by ALMA are slightly stretched, or shifted, to the “redder” portion of the spectrum; the blue color represents gas moving toward Earth, so the radio waves are slightly scrunched, or shifted, to the “bluer” portion of the spectrum. Credit: ALMA (ESO/NAOJ/NRAO), E.M. Murchikova; NRAO/AUI/NSF, S. Dagnello

New ALMA observations reveal a never-before-seen disk of cold, interstellar gas wrapped around the supermassive black hole at the center of the Milky Way. This nebulous disk gives astronomers new insights into the workings of accretion: the siphoning of material onto the surface of a black hole. The results are published in the journal Nature.

Through decades of study, astronomers have developed a clearer picture of the chaotic and crowded neighborhood surrounding the supermassive black hole at the center of the Milky Way. Our galactic center is approximately 26,000 light-years from Earth and the supermassive black hole there, known as Sagittarius A* (A “star”), is 4 million times the mass of our Sun.

SgrA* NASA/Chandra supermassive black hole at the center of the Milky Way

SO-2 and SO-38 circle SGR A*Image UCLA Galactic Center Groupe via S. Sakai and Andrea Ghez at Keck Observatory

We now know that this region is brimming with roving stars, interstellar dust clouds, and a large reservoir of both phenomenally hot and comparatively colder gases. These gasesare expected toorbit the black hole in a vast accretion disk that extends a few tenths of a light-year from the black hole’s event horizon.

Until now, however, astronomers have only been able to image the tenuous, hot portion of this accreting gas, which forms a roughly spherical flow and showed no obvious rotation. Its temperature is estimated to be a blistering 10 million degrees Celsius (18 million degrees Fahrenheit), or about halfthe temperature found at the core of our Sun. At this temperature, the gas glows fiercely in X-ray light, allowing it to be studied by space-based X-ray telescopes, down to scale of about a tenth of a light-year from the black hole.

In addition to this hot, glowing gas, previous observations with millimeter-wavelength telescopes have detected a vast store of comparatively cooler hydrogen gas (nearly10 thousand degrees Celsius or 18,000 degrees Fahrenheit) within few light years around the black hole. The contributionof this cooler gas to the accretion flow onto the back hole was previously unknown.

Although our galactic center black hole is relatively quiet,the radiation around it is strongenough to cause hydrogen atoms to continually lose and recombine with their electrons. This recombination produces a distinctive millimeter-wavelength signal, which is capable of reaching the Earth with very little losses on the way.With its remarkable sensitivity and powerful ability to see fine details, the Atacama Large Millimeter/submillimeter Array (ALMA)was able to detect this faint radio signal and produce the first-ever image of the cooler gas disk surrounding the Milky Way’s supermassive black hole at only about a hundredth of a light-year away, or about 1000 times the distance from the Earth to the Sun.These observations enabled the astronomers both to map the location and trace the motion of this gas.The researchers estimate that the amount of hydrogen in this cool disk is about one tenth the mass of Jupiter, or one ten-thousandth of the mass of the Sun.

By mapping the shifts in wavelengths of this radio light due to the Doppler effect (light from objects moving toward the Earth is slightly shifted to the “bluer” portion of the spectrum while light from objects moving away is slightly shifted to the “redder” portion), the astronomers could clearly see that the gas is rotatingaround the black hole. This information will provide new insights into the ways that black holes devour matter and the complex interplay between a black hole and its galactic neighborhood.

“We were the first to image this elusive disk and study its rotation,” said Elena Murchikova, a member in astrophysics at the Institute for Advanced Study in Princeton, New Jersey.“We are also probing accretion onto the black hole. This is important because this is our closest supermassive black hole. Even so, we still have no good understanding of how its accretion works. We hope these new ALMA observations will help the black hole give up some of its secrets.”

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

NRAO Small
ESO 50 Large