From Eos: “Monitoring Haiti’s Quakes with Raspberry Shake”

From AGU
Eos news bloc

From Eos

17 May 2019
By Eric Calais, Dominique Boisson, Steeve Symithe, Roberte Momplaisir, Claude Prépetit, Sophia Ulysse, Guy Philippe Etienne, Françoise Courboulex, Anne Deschamps, Tony Monfret, Jean-Paul Ampuero, Bernard Mercier de Lépinay, Valérie Clouard, Rémy Bossu, Laure Fallou, and Etienne Bertrand

A woman displays a Raspberry Shake seismometer. Poor-quality construction, typical of many neighborhoods in Haiti, is visible in the background. A pilot project to create a network of these personal seismometers across Haiti aims not only to provide earthquake data but also to involve citizens in earthquake awareness and hazard mitigation efforts. Credit: E. Calais

On 12 January 2010, a devastating earthquake put Haiti on the map for many of us who were unaware of the recurrent difficulties that the country has endured over the past decades. The earthquake claimed more than 200,000 lives, and the damage amounted to about $11 billion, close to 100% of the country’s gross domestic product.

Before the earthquake, Haiti had no seismic network, no in-country seismologist, no active fault map, no seismic hazard map, no microzonation, and no building code. The national seismic network that has emerged since then currently consists of 10 broadband stations (Figure 1) [Seismological Research Letters ], operated and maintained by Haiti’s Bureau of Mines and Energy (BME). Although this network was a significant step in the right direction, it has not proved to be a panacea.

Fig. 1. Seismic stations in Haiti (symbols) and seismic activity as reported by the U.S. Geological Survey (white circles) from August 1946 to 14 January 2019. Natural Resources Canada (NRCan) broadband station PAPH (red circle), based in Port-au-Prince, is usually operational. The nine Raspberry Shake stations shown on this map (with their code names) were installed in January 2019 and were operational as of 15 February. The yellow star east of Port-au-Prince indicates the location of the M3.1 earthquake shown in Figure 3. Stations RE7D0, RE87E, and R2ABA, which use Wi-Fi to connect to the Internet, are not observing the radio frequency interference noted by some RS hosts elsewhere who also use Wi-Fi to connect to the Internet. BME is Haiti’s Bureau of Mines and Energy, which operates seismic instruments from two manufacturing companies.

On 6 October 2018, a magnitude 5.9 earthquake struck northwestern Haiti, causing 17 fatalities and significant damage in the larger cities of the epicentral area. Only one seismic station was operating at the time, a situation that has persisted for several years now. In spite of its continued efforts, it is difficult for the BME to overcome the chronic lack of resources—financial and human—necessary to maintain such a high-technology system.

This is where Raspberry Shake (RS) comes into play [Anthony et al., 2018 (Seismological Research Letters)]. This organization, founded using a Kickstarter campaign in 2016, provides affordable “personal seismometers” powered by small Raspberry Pi computers. The low cost of an RS station and the ease of installation and maintenance make it possible to imagine a situation in which perhaps as many as 100 citizens, businesses, or schools throughout Haiti would host an RS station.

To do more than just imagine, we began a pilot project last January, purchasing and deploying nine one-component vertical velocimeters (RS1D) throughout Haiti (Figure 1), four of them additionally equipped with 3-D accelerometers (RS4D). Except for one station located at the BME, all RS hosts are private homes or hotels. We selected these hosts from people whom we knew had quasi-continuous Internet access and electricity, the latter being a major issue in Haiti. This initiative is similar to the Quake Catcher Network [see below] [Cochran et al., 2009 (Seismological Research Letters)], although the latter uses only accelerometers.

Overcoming Limited Resources

As a result of resource limitations, seismologists in Haiti are able to provide only limited information to the public or to decision-makers when earthquakes are felt. This reinforces the ill-founded perception that seismic monitoring is of little value, and it keeps the population in the dark about seismic hazard. As a result, citizens and businesses do little to protect themselves from future large events. The lack of reliable information also provides ground for fake seismonews, including the notion that earthquake prediction has already been around for years so that earthquake monitoring is irrelevant.

Interestingly, however, the public demands reliable information about earthquakes and tsunamis and their associated risks. They ask questions, want to be informed, and want to know how to prepare. Some would even like to be able to help improve earthquake knowledge in Haiti.

A citizen’s network of small, affordable seismic stations could be a starting place for providing this information. Even though RS instruments would most likely be concentrated in major cities, their redundancy would alleviate inevitable maintenance issues at any single station. Such a network would improve the ability of the Haiti seismic network to detect small-magnitude earthquakes on a continuous basis, resulting in a better understanding of earthquake distribution and fault behavior. In addition, installing seismometers in people’s homes may be a way to initiate a conversation with the population to promote a culture of earthquake safety.

Setting Up the Network

Raspberry Shake setup at station R897D in Jacmel (see Figure 1) uses an RS1D instrument located on the first floor of a public notary’s office, under “made-on-the-spot” wooden protection. The RS station is connected to secure power and to the Internet through an Ethernet cable to the router visible on the windowsill. From left to right are Berthony (technician from the Haiti Bureau of Mines and Energy); Mrs. Beaulieu, who hosts the station; and authors Eric Calais and Steeve Symithe. Credit: E. Calais

We set about creating our RS network by simply laying an RS instrument on the floor of the quietest first-story room we could find at each location. We connected them to power and Internet utilities, in six cases directly to the router via an Ethernet cable and in three cases via Wi-Fi. We made it clear to the hosts that the RS stations would use very little power and Internet bandwidth but that they should contact us if they suspected any issue. We also told them that they were free to disconnect the RS in case of a problem.

Several hosts asked whether their RS could serve to predict earthquakes or whether they would sound an alarm if seismic waves were coming. We made it very clear that this was not the case and explained that we were mostly interested in the smaller earthquakes: the ones they never feel but that occur every day.

“What? There are earthquakes every day in Haiti?” was a common reaction. Yes, indeed, we told our hosts, and knowing where and how big the small quakes are tells us a lot about the future large ones. Many hosts asked how they could see the information. We showed them how to view the helicorder (which records data from the seismometer) from their smartphone or computer on their local network, but often, they were not impressed with the displays. Helicorder output is indeed difficult to read because most squiggles are not earthquakes. Clearly, we need to do more work on how to provide relevant and useful information to RS station hosts.

First Observations

Three weeks after the installation of the first RS, we could already make a few observations that will be useful for the next phase of our project and, we hope, for other similar projects elsewhere.

We have detected many events that occurred less than 100 kilometers from this first RS station. The first one (Figure 2), recorded on 13 January 2019, was later located by the seismological network of the Dominican Republic, which quoted its magnitude as 3.1. We also recorded a sequence of four events in northwestern Haiti the day after we installed another station; these events were not reported by any regional seismic network. Regional events show up very well too, for example, the M5.3 earthquake that struck the Dominican Republic on 4 February 2019. Even the P wave and S wave arrivals of teleseismic (distant) events are recorded, including an M5.6 earthquake that occurred in Colombia on 26 January 2019.

Fig. 2. Station R30E2, located in downtown Pétion-Ville, produced Haiti’s first Raspberry Shake station recording of a local earthquake on 13 January 2019. This event was not reported by Haiti’s national seismic network, but it was later reported by the Dominican Republic seismic network as an M3.1 event (yellow star in Figure 1) along the Enriquillo–Presqu’île du Sud fault close to the border between Haiti and the Dominican Republic.

Noise levels are, of course, very different from station to station, unless tight seismological prescriptions are enforced. However, that is not the point of using low-cost RS stations at individual homes, businesses, or schools. Our hope is that the redundancy of RS stations within a small footprint—a city—will suffice to ensure the availability of enough reliable data. This remains to be investigated in a quantitative manner as more stations come online.

We noticed that reliability and continuity of service are an issue, even though we tried our best to place the RS instruments at locations with continuous power and reliable Internet. One RS station host wanted to negotiate communication costs and, after a few days, apparently disconnected his station. Another station, located in a power-secure part of Port-au-Prince that had not previously needed power backup, is now experiencing regular blackouts. This underscores the importance of observation redundancy, with many stations at short distances from each other, because one never knows which one will have an issue and stop operating when an interesting earthquake shows up.

A Work in Progress

We were positively impressed by the response of civil society members and the private sector to this initiative. However, to gain the support of civil society, it is clear that we need to provide RS hosts with personalized information, such as “your RS instrument detected an earthquake of magnitude 2.5 located 50 kilometers away, in the area of….” A smartphone application would be a great way to provide this information in quasi-real time and keep station hosts engaged. It could also serve to broadcast information on earthquake preparedness and hence use the (fortunately long!) time intervals between large earthquakes to educate and promote earthquake safety.

With the lessons learned during this pilot experiment, our goal now is to push forward and engage the civil society and the private sectors—at least those entities that can afford continuous power and Internet—to be a bigger part of this project. Expanding the project would provide more RS stations and thus redundancy and continuity of service. It would also engage RS hosts in a project that puts them at the center of the information chain. RS hosts will become information providers to scientists rather than passive listeners to scarce and unintelligible information.

It is our hope that as RS hosts and others become more aware of the earthquake issue, they will share information they will be privy to. We hope that they will become advocates for seismic monitoring, but more important, we hope that they will act to reduce seismic risk for themselves and their community.


This pilot activity is funded by the Interreg Caraibes/European Regional Development Fund (FEDER) program through the PREST (vers la Plateforme Régionale de Surveillance Tellurique du Futur) project, the Centre National de la Recherche Scientifique/French Institute for Research and Development (IRD) Risques Naturels program, and the Jeune Equipe Associée of the IRD. All data from the RS stations installed in Haiti are openly available via the Raspberry Shake International Federation of Digital Seismograph Networks (FDSN) web services. We thank Maurice Lamontagne and two anonymous reviewers for their constructive comments.


Anthony, R. E., et al. (2018), Do low‐cost seismographs perform well enough for your network? An overview of laboratory tests and field observations of the OSOP Raspberry Shake 4D, Seismol. Res. Lett., 90(1), 219–228,

Bent, A. L., et al. (2018), Real‐time seismic monitoring in Haiti and some applications, Seismol. Res. Lett., 89(2A), 407–415,

Cochran, E. S., et al. (2009), The Quake-Catcher Network: Citizen science expanding seismic horizons, Seismol. Res. Lett., 80(1), 26–30,

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

Earthquake Alert


Earthquake Alert

Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

Get the app in the Google Play store.

Smartphone network spatial distribution (green and red dots) on December 4, 2015

Meet The Quake-Catcher Network

QCN bloc

Quake-Catcher Network

The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

Below, the QCN Quake Catcher Network map
QCN Quake Catcher Network map

ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

Watch a video describing how ShakeAlert works in English or Spanish.

The primary project partners include:

United States Geological Survey
California Governor’s Office of Emergency Services (CalOES)
California Geological Survey
California Institute of Technology
University of California Berkeley
University of Washington
University of Oregon
Gordon and Betty Moore Foundation

The Earthquake Threat

Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

Part of the Solution

Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

System Goal

The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

Current Status

The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.


The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

For More Information

Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach

Learn more about EEW Research

ShakeAlert Fact Sheet

ShakeAlert Implementation Plan