From CERN ATLAS: “Searching for Electroweak SUSY: not because it is easy, but because it is hard”

CERN/ATLAS detector

CERN ATLAS Higgs Event

CERN ATLAS another view Image Claudia Marcelloni ATLAS CERN


CERN ATLAS New II Credit CERN SCIENCE PHOTO LIBRARY


From CERN ATLAS

20th May 2019
ATLAS Collaboration

The Standard Model is a remarkably successful but incomplete theory.

Standard Model of Particle Physics

Supersymmetry (SUSY) offers an elegant solution to the Standard Model’s limitations, extending it to give each particle a heavy “superpartner” with different “spin” properties (an important “quantum number”, distinguishing matter particles from force particles and the Higgs boson). For example, “sleptons” are the spin 0 superpartners of spin 1/2 electrons, muons and tau leptons, while “charginos” and “neutralinos” are the spin 1/2 counterparts of the spin 0 Higgs bosons (SUSY postulates a total of five Higgs bosons) and spin 1 gauge bosons.

If these superpartners exist and are not too massive, they will be produced at CERN’s Large Hadron Collider (LHC) and could be hiding in data collected by the ATLAS detector. However, unlike most processes at the LHC, which are governed by strong force interactions, these superpartners would be created through the much weaker electroweak interaction, thus lowering their production rates. Further, most of these new SUSY particles are expected to be unstable. Physicists can only search for them by tracing their decay products – typically into a known Standard Model particle and a “lightest supersymmetric particle” (LSP), which could be stable and non-interacting, thus forming a natural dark matter candidate.

______________________________________________
If sleptons, charginos and neutralinos exist, they will be produced at the LHC and could be hiding in Run 2 data. New searches from the ATLAS Collaboration look for these particles around unexplored corners.
______________________________________________

Today, at the Large Hadron Collider Physics (LHCP) conference in Puebla, Mexico, and at the SUSY2019 conference in Corpus Christi, USA, the ATLAS Collaboration presented numerous new searches for SUSY based on the full Run-2 dataset (taken between 2015 and 2018), including two particularly challenging searches for electroweak SUSY. Both searches target particles that are produced at extremely low rates at the LHC, and decay into Standard Model particles that are themselves difficult to reconstruct. The large amount of data successfully collected by ATLAS in Run 2 provides a unique opportunity to explore these scenarios with new analysis techniques.

Search for the “stau”

Collider and astroparticle physics experiments have set limits on the mass of various SUSY particles. However, one important superpartner – the tau slepton, known as the “stau” – has yet to be searched for beyond the exclusion limit of around 90 GeV found at the LHC’s predecessor at CERN, the Large Electron-Positron collider (LEP). A light stau, if it exists, could play a role in neutralino co-annihilation, moderating the amount of dark matter in the visible universe, which otherwise would be too abundant to explain astrophysical measurements.

The search for a light stau is experimentally challenging due to its extremely low production rate in LHC proton-proton collisions, requiring advanced techniques to reconstruct the Standard Model tau leptons it can decay into. In fact, during Run 1, only a narrow parameter region around a stau mass of 109 GeV and a massless lightest neutralino could be excluded by LHC experiments.

2
Figure 1: Observed (expected) limits on the combined left and right stau pair production are shown by the red line (black dashed line). The mass of stau is shown on the x-axis, while the mass of the LSP is shown on the y-axis. (Image: ATLAS Collaboration/CERN)

3
Figure 2: Observed (expected) limits on the stau-left pair production are shown by the red line (black dashed line). The mass of stau is shown on the x-axis, while the mass of the LSP is shown on the y-axis. (Image: ATLAS Collaboration/CERN)

This first ATLAS Run 2 stau search targets the direct production of a pair of staus, each decaying into one tau lepton and one invisible LSP. Each tau lepton further decays into hadrons and an invisible neutrino. Signal events would thus be characterised by the presence of two sets of close-by hadrons and large missing transverse energy (ETmiss) originating from the invisible LSP and neutrinos. Events are further categorized into regions with medium and high ETmiss, to examine different stau mass scenarios.

The ATLAS data did not reveal hints for stau pair production and thus new exclusion limits were set on the mass of staus. These limits are shown in Figures 1 and 2 using different assumptions on the presence of both possible stau types (left and right, referring to the two different spin states of the tau partner lepton). The limits obtained are the strongest obtained so far in these scenarios.

Compressed search

One of the reasons physicists have yet to see charginos and neutralinos may be because their masses are “compressed”. In other words, they are very close to the mass of the LSP. This is expected in scenarios where these particles are “higgsinos”, the superpartners of the Higgs bosons.

Compressed higgsinos decay to pairs of electrons or muons with very low momenta. It is challenging to identify and reconstruct these particles in an environment with more than a billion high-energy collisions every second and a detector designed to measure high-energy particles – like trying to locate a whispering person in a very crowded and noisy room.

3
Figure 3: The distribution of the electron/muon and track pair mass, where the signal events tend to cluster at low mass values. The solid histogram indicates the Standard Model background process, the points with error bars indicate the data, and the dashed lines indicate hypothetical Higgsino events. The bottom plot shows the ratio of the data to the total Standard Model background. (Image: ATLAS Collaboration/CERN)

4
Figure 4: Observed (expected) limits on higgsino production are shown by the red line (blue dashed line). The mass of the produced higgsino is shown on the x-axis, while the mass difference to the LSP is shown on the y-axis. The grey region represents the models excluded by the LEP experiments. The blue region represents the constraint from the previous ATLAS search for higgsinos.(Image: ATLAS Collaboration/CERN)

A new search for higgsinos utilizes muons measured with unprecedentedly low – for ATLAS, so far – momenta. It also benefits from new and unique analysis techniques that allow physicists to look for higgsinos in areas that were previously inaccessible. For example, the search uses charged particle tracks, which can be reconstructed with very low momentum, as a proxy for one of the electrons or muons in the decay pair. Because of the small mass difference between the higgsinos, the mass of the electron/muon and track pair is also expected to be small, as shown in Figure 3.

Once again, no signs of higgsinos were found in this search. As shown in Figure 4, the results were used to extend constraints on higgsino masses set by ATLAS in 2017 and by the LEP experiments in 2004.

Overall, both sets of results place strong constraints on important supersymmetric scenarios, which will guide future ATLAS searches. Further, they provide examples of how advanced reconstruction techniques can help improve the sensitivity of new physics searches.

See the full article for further reseach materials.

See the full article here .


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

CERN Courier

Quantum Diaries
QuantumDiaries

CERN map


CERN LHC Grand Tunnel
CERN LHC particles

QuantumDiaries


Quantum Diaries