From UC Santa Cruz: “UC Santa Cruz hosts summer program on machine learning in astronomy”

UC Santa Cruz

From UC Santa Cruz

April 19, 2019
Tim Stephens
stephens@ucsc.edu

The Kavli Summer Program in Astrophysics brings together an international group of scientists and students for a six-week program of learning and research

1

2
An international group of students participated in the 2016 Kavli Summer Program in Astrophysics at UC Santa Cruz.

The 2019 Kavli Summer Program in Astrophysics at UC Santa Cruz will focus on “Machine Learning in the Era of Large Astronomical Surveys,” bringing together scientists and students from a broad range of backgrounds to learn about machine learning techniques and their applications in astronomy.

The Kavli Summer Program in Astrophysics combines the concept of a long-term workshop with graduate student training through research projects. Up to 15 established faculty, 15 post-doctoral researchers, and 15 graduate students come from around the world to join local scientists at the host institution for the six-week program, which alternates between UC Santa Cruz and various institutions world-wide.

The program begins with a one-week workshop on the topic of the year, after which the students are teamed with the senior participants and are expected to make significant progress on their selected project. Each year, the program tackles a different topic in astrophysics.

This year’s topic addresses the challenges of big data in astronomy. Large astronomical surveys now collect unprecedented amounts of data, while large-scale computer simulations of astrophysical phenomena can also generate enormous datasets. To cope with this torrent of data, astronomers are adopting tools developed in the data science industry, such as machine learning and artificial intelligence.

“This field is very rapidly emerging in astronomy,” said J. Xavier Prochaska, professor of astronomy and astrophysics at UC Santa Cruz. “Indeed, some of the students attending have more experience than the organizers.”

Prochaska is a co-director of the 2019 program, along with UCSC astronomers Alexie Leauthaud and Brant Robertson. Prochaska is also a co-founder of the Applied Artificial Intelligence Institute at UC Santa Cruz, one of the sponsors of the summer program. Pascale Garaud, professor of applied mathematics at UC Santa Cruz, started the program in 2010 as the International Summer Institute for Modeling in Astrophysics (ISIMA). The Kavli Foundation has been supporting the program since 2016.

“The Kavli Foundation is pleased to support innovative projects, and this year’s focus on big data addresses an issue of growing importance to astronomy,” said Christopher Martin, senior science program officer for the Kavli Foundation.

In Santa Cruz, the Kavli Summer Program in Astrophysics is associated with TASC (Theoretical Astrophysics at Santa Cruz), a multi-departmental research group of UCSC scientists from Applied Mathematics, Astronomy and Astrophysics, Earth and Planetary Sciences, and Physics. Additional support for the 2019 program is provided by the National Science Foundation, UC Santa Cruz, and the UCSC Applied Artificial Intelligence Institute.

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

.

UCO Lick Shane Telescope
UCO Lick Shane Telescope interior
Shane Telescope at UCO Lick Observatory, UCSC

Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

UC Santa Cruz campus
The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

UCSC is the home base for the Lick Observatory.

Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

Search for extraterrestrial intelligence expands at Lick Observatory
New instrument scans the sky for pulses of infrared light
March 23, 2015
By Hilary Lebow
1
The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

“Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

“The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

“We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

“This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

“Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.