From AAS NOVA: “Exploring Filaments on the Sun”

AASNOVA

From AAS NOVA

17 April 2019
Susanna Kohler

1
This image of the Sun’s chromosphere reveals dark cuts across its surface: solar filaments. A new study explores how these filaments are built. [NOAA/SEL/USAF]

Images of the Sun’s chromosphere often reveal dark threads cutting across the Sun’s face. New research has now explored how these solar filaments are built from magnetic fields and plasma.

Two-Faced Structures

3
A solar eruptive prominence as seen in extreme UV light on March 30, 2010, with Earth superimposed for a sense of scale. [NASA/SDO]

NASA/SDO

Solar filaments may look like deep cracks in the Sun’s façade, but in reality, they are enormous arcs of hot plasma that extend above the Sun’s surface. Because this plasma is slightly cooler than the solar surface below, they appear dark against the hotter background.

Unfamiliar with filaments? You’ve likely seen plenty of them in images — but from a different angle! Filaments are the same structures as solar prominences, the loops of plasma we can see suspended above the Sun’s limbs. When prominences appear on the side of the Sun facing us, they take the form of filaments from our point of view.

Shaped by Fields

Filaments are often associated with various forms of solar activity. They last for days, frequently hanging above active regions of the Sun; filament channels are often the origin of eruptions from the Sun’s surface. To better understand our active and energetic Sun, understanding the structures of filaments is an important step.

Unfortunately, this is challenging! We know that filament structure is largely due to the magnetic fields — whose forces suspend the filaments against the downward pull of gravity — but we don’t have the ability to directly measure the magnetic field in the Sun’s atmosphere. A team of scientists at the University of Science and Technology of China has instead taken an indirect approach: they explored filaments by looking at the motion of plasma along them.

4
Top: time-distance map characterizing the oscillations at one position on the filament spine. Bottom: a Doppler map, averaged over time, that shows the rotation around the spine of the filament. Blue indicates motion toward the observer, red away. [Adapted from Awasthi et al. 2019]

A Double Decker?

Scientists Arun Awasthi, Rui Liu, and Yuming Wang examined observations of a filament that appeared near active region AR 12685 in October 2017, captured with the 1-m New Vacuum Solar Telescope in China. The team used these high-resolution images to explore bulk motions of plasma in the filament.

Awasthi and collaborators found that the filament displayed two different types of motion: rotation around its central spine, and longitudinal oscillations along its spine. The longitudinal oscillations in the eastern segment of the filament were distinct from those in the west, suggesting that the magnetic field lines underneath these two segments have different lengths and curvatures.

On the whole, the motions observed in the filament indicate that magnetic structure for filaments is complicated. The authors argue that more than one model is likely at work; they propose a “double-decker” picture for the filament in which a flux rope (a twisted bundle of magnetic field lines) sits on top of a sheared arcade (a series of distorted loops).

Awasthi and collaborators conclude with specific predictions of indicators we can look for in future filament observations to test this model. If correct, this view of filament structure brings us a little closer to understanding the complex magnetic fields that control solar activity.

Citation

“Double-decker Filament Configuration Revealed by Mass Motions,” Arun Kumar Awasthi et al 2019 ApJ 872 109.
https://iopscience.iop.org/article/10.3847/1538-4357/aafdad/meta

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

1

AAS Mission and Vision Statement

The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

Adopted June 7, 2009