From European Southern Observatory: “NAOMI Sees First Light”

ESO 50 Large

From European Southern Observatory

7 December 2018
Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Email: pio@eso.org

1
The New Adaptive Optics Module for Interferometry (NAOMI) has seen first light after being installed on all four 1.8-metre Auxiliary Telescopes (ATs) of ESO’s Very Large Telescope Interferometer (VLTI) at the Paranal Observatory in Chile. By introducing state-of-the-art adaptive optics technology, NAOMI has improved the imaging capabilities of the VLTI to unprecedented levels, giving the VLTI’s powerful scientific instruments such as GRAVITY a clearer view of the Universe than ever.

ESO Auxiliary 1.8 meter telescopes and NAOMI

ESO NAOMI sketch of the calibration bench

The VLTI is a mode of ESO’s Very Large Telescope (VLT) that can combine up to all four ATs or the 8.2-metre Unit Telescopes of the VLT to create a virtual telescope with a diameter of up to 130 metres, allowing incredibly high-resolution observations. Using the VLTI, astronomers can study stellar surfaces, active galactic nuclei, young stars, and a variety of other intriguing astronomical objects.

To combat the effects of atmospheric turbulence on the quality of the observations performed by the VLTI, ESO has developed the new adaptive optics system named NAOMI. The system was constructed to improve the sensitivity and performance of the VLT’s ATs in collaboration with the Institut de Planétologie et d’Astrophysique de Grenoble (Centre National de la Recherche Scientifique/Université Grenoble Alpes).

Developing NAOMI was a tremendously technically challenging endeavour. “The newly installed modules have to concentrate light into optical fibres only a few microns wide — barely a tenth of the width of a human hair!” explained Jean-Philippe Berger of the IPAG. “We also faced the formidable challenge of installing the four adaptive optics systems as quickly as possible in order not to disturb VLTI observations.”

Previously, the ATs were equipped with the less sophisticated STRAP system (System for Tip/tilt Removal with Avalanche Photodiodes), which observed the effects of atmospheric turbulence and corrected the tilt of the received wavefronts by rapidly adjusting a steering mirror. Despite the valuable corrections it provided under good atmospheric conditions, image quality decreased significantly when conditions were poor.

“Observing with the VLTI on the ATs was heavily dependent on atmospheric conditions and after every sunset we would anxiously wait to see if it would be a lucky night,” explained Julien Woillez, the VLTI Project Scientist. “NAOMI is changing all this — we can now observe efficiently even in less good seeing conditions.”

Developing NAOMI was a tremendously technically challenging endeavour. “The newly installed modules have to concentrate light into optical fibres only a few microns wide — barely a tenth of the width of a human hair!” explained Jean-Philippe Berger of the IPAG. “We also faced the formidable challenge of installing the four adaptive optics systems as quickly as possible in order not to disturb VLTI observations.”

Previously, the ATs were equipped with the less sophisticated STRAP system (System for Tip/tilt Removal with Avalanche Photodiodes), which observed the effects of atmospheric turbulence and corrected the tilt of the received wavefronts by rapidly adjusting a steering mirror. Despite the valuable corrections it provided under good atmospheric conditions, image quality decreased significantly when conditions were poor.

“Observing with the VLTI on the ATs was heavily dependent on atmospheric conditions and after every sunset we would anxiously wait to see if it would be a lucky night,” explained Julien Woillez, the VLTI Project Scientist. “NAOMI is changing all this — we can now observe efficiently even in less good seeing conditions.”

By using an advanced adaptive optics system [1], NAOMI will improve the precision of the measurements performed by the VLTI and achieve a better and more stable image quality. The VLTI’s razor-sharp new adaptive optics will enable efficient, long integrations even in degraded seeing — bringing out the best of the VLTI instruments under all atmospheric conditions.

“On some nights it looks like the atmosphere is virtually gone! We can now observe much fainter objects,” concluded Woillez. “With NAOMI, we can now use cutting-edge second-generation instruments like PIONIER, GRAVITY, and MATISSE to their full potential.”
Notes

[1] A key component of the NAOMI module is a deformable mirror from the company ALPAO — in a feat of optical engineering, the shape of this mirror is updated 500 times per second, ensuring that the VLTI’s view is almost free of atmospheric turbulence.

Links

More information about NAOMI
Engineering paper presenting NAOMI
Engineering paper presenting NAOMI’s deformable mirror

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.


Stem Education Coalition

Visit ESO in Social Media-

Facebook

Twitter

YouTube

ESO Bloc Icon

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre EEuropean Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

ESO La Silla HELIOS (HARPS Experiment for Light Integrated Over the Sun)

ESO/HARPS at La Silla

ESO 3.6m telescope & HARPS at Cerro LaSilla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.

ESO 2.2 meter telescope at La Silla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

ESO/Cerro LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

ESO VLT Platform at Cerro Paranal elevation 2,635 m (8,645 ft)


ESO VLT 4 lasers on Yepun

Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT.

ESO/NTT at Cerro La Silla, Chile, at an altitude of 2400 metres



ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

ESO/APEX high on the Chajnantor plateau in Chile’s Atacama region, at an altitude of over 4,800 m (15,700 ft)

Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

SPECULOOS four 1m-diameter robotic telescopes 2016 in the ESO Paranal Observatory, 2,635 metres (8,645 ft) above sea level

ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres