From AAS NOVA: “When Is the Next Glitch on Pulsar J0537-6910?”



4 December 2018
Lisa Drummond

Pulsars emit radiation that sweeps over the Earth like a lighthouse. We observe this radiation as a sequence of pulses. [Bill Saxton/NRAO/AUI/NSF]

Title: Predicting the Starquakes in PSR J0537-6910
Authors: John Middleditch, Francis E. Marshall, Q. Daniel Wang, Eric V. Gotthelf, William Zhang
First Author’s Institution: Los Alamos National Laboratory

Status: Published in ApJ

Artist’s illustration of a pulsar, a fast-spinning, magnetised neutron star. [NASA]

Pulsars (rotating, magnetised neutron stars) emit radiation that sweeps periodically over the Earth (like the beam of a lighthouse sweeping across the ocean). We detect this radiation as a sequence of pulses, with the frequency of the pulse corresponding to the frequency of rotation of the star. Pulsars will typically spin down over their lifetime due to electromagnetic braking, but this is a fairly slow process. Occasionally, in some pulsars, we will detect a sudden increase in the frequency of the pulses. This is called a pulsar glitch. Essentially, the mismatch in the rotation of the fluid inside the star and the solid crust on the outside of the star causes a catastrophic event that we see as an increase in the frequency of the pulses.

Women in STEM – Dame Susan Jocelyn Bell Burnell

Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

Dame Susan Jocelyn Bell Burnell 2009

Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www.

The question that the paper we’re exploring today — originally published in 2006 — seeks to answer is: can you predict the next glitch in a pulsar? In general, this is a challenging task, with different pulsars exhibiting different glitching behaviours that need to be captured in your model. However, for one particular pulsar, PSR J0537-6910, this can be accomplished fairly straightforwardly, due to the strong correlation between the size of each glitch and the waiting time until the next glitch. The authors of today’s paper exploit this correlation to develop a method to predict the next starquake on PSR J0537-6910.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition


AAS Mission and Vision Statement

The mission of the American Astronomical Societyis to enhance and share humanity’s scientific understanding of the Universe.

The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

Adopted June 7, 2009