From International Centre for Radio Astronomy Research: “Aussie telescope almost doubles known number of mysterious ‘fast radio bursts’”

ICRAR Logo
From International Centre for Radio Astronomy Research

October 11, 2018
Dr Ryan Shannon
Swinburne University of Technology
& OzGrav ARC Centre of Excellence
+61 3 9214 5205
rshannon@swin.edu.au

Dr Jean-Pierre Macquart —
ICRAR / Curtin University
+61 8 9266 9248
jean-pierre.macquart@icrar.org

Dr Keith Bannister
CSIRO
+61 2 9372 4295
keith.bannister@csiro.au

Pete Wheeler —
Media Contact, ICRAR
Ph: +61 423 982 018
pete.wheeler@icrar.org

October 11, 2018

Australian researchers using a CSIRO radio telescope in Western Australia have nearly doubled the known number of ‘fast radio bursts’— powerful flashes of radio waves from deep space.
The team’s discoveries include the closest and brightest fast radio bursts ever detected. Their findings were reported today in the journal Nature.

Fast radio bursts come from all over the sky and last for just milliseconds. Scientists don’t know what causes them but it must involve incredible energy—equivalent to the amount released by the Sun in 80 years. “We’ve found 20 fast radio bursts in a year, almost doubling the number detected worldwide since they were discovered in 2007,” said lead author Dr Ryan Shannon, from Swinburne University of Technology and the OzGrav ARC Centre of Excellence.

“Using the new technology of the Australia Square Kilometre Array Pathfinder (ASKAP), we’ve also proved that fast radio bursts are coming from the other side of the Universe rather than from our own galactic neighbourhood.”

Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

1
For each burst, the top panels show what the FRB signal looks like when averaged over all frequencies. The bottom panels show how the brightness of the burst changes with frequency. The bursts are vertical because they have been corrected for dispersion. Credit: Ryan Shannon and the CRAFT collaboration.

Co-author Dr Jean-Pierre Macquart, from the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR), said bursts travel for billions of years and occasionally pass through clouds of gas. “Each time this happens, the different wavelengths that make up a burst are slowed by different amounts,” he said. “Eventually, the burst reaches Earth with its spread of wavelengths arriving at the telescope at slightly different times, like swimmers at a finish line. “Timing the arrival of the different wavelengths tells us how much material the burst has travelled through on its journey. “And because we’ve shown that fast radio bursts come from far away, we can use them to detect all the missing matter located in the space between galaxies—which is a really exciting discovery.”

CSIRO’s Dr Keith Bannister, who engineered the systems that detected the bursts, said ASKAP’s phenomenal discovery rate is down to two things. “The telescope has a whopping field of view of 30 square degrees, 100 times larger than the full Moon,” he said. “And, by using the telescope’s dish antennas in a radical way, with each pointing at a different part of the sky, we observed 240 square degrees all at once—about a thousand times the area of the full Moon. “ASKAP is astoundingly good for this work.”

Dr Shannon said we now know that fast radio bursts originate from about halfway across the Universe but we still don’t know what causes them or which galaxies they come from.
The team’s next challenge is to pinpoint the locations of bursts on the sky. “We’ll be able to localise the bursts to better than a thousandth of a degree,” Dr Shannon said.
“That’s about the width of a human hair seen ten metres away, and good enough to tie each burst to a particular galaxy.”

ASKAP is located at CSIRO’s Murchison Radio-astronomy Observatory (MRO) in Western Australia, and is a precursor for the future Square Kilometre Array (SKA) telescope.

SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)

The SKA could observe large numbers of fast radio bursts, giving astronomers a way to study the early Universe in detail.

CSIRO acknowledges the Wajarri Yamaji as the traditional owners of the MRO site.

A fast radio burst leaves a distant galaxy, travelling to Earth over billions of years and occasionally passing through clouds of gas in its path. Each time a cloud of gas is encountered, the different wavelengths that make up a burst are slowed by different amounts. Timing the arrival of the different wavelengths at a radio telescope tells us how much material the burst has travelled through on its way to Earth and allows astronomers to to detect “missing” matter located in the space between galaxies. Credit: CSIRO/ICRAR/OzGrav/Swinburne University of Technology

Dr Ryan Shannon (Swinburne/OzGrav), Dr Jean-Pierre Macquart (Curtin/ICRAR) and Dr Keith Bannister (CSIRO) describe their discovery of 20 new fast radio bursts (FRBs) and how the Phased Array Feed (PAF) receiver technology in CSIRO’s Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope enabled this breakthrough science. Credit: CSIRO.

More Information:
ASKAP

The Australian Square Kilometre Array Pathfinder (ASKAP) is the world’s fastest survey radio telescope. Designed and engineered by CSIRO, ASKAP is made up of 36 ‘dish’ antennas, spread across a 6km diameter, that work together as a single instrument called an interferometer. The key feature of ASKAP is its wide field of view, generated by its unique phased array feed (PAF) receivers. Together with specialised digital systems, the PAFs create 36 separate (simultaneous) beams on the sky which are mosaicked together into a large single image.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

ICRAR is an equal joint venture between Curtin University and The University of Western Australia with funding support from the State Government of Western Australia. The Centre’s headquarters are located at UWA, with research nodes at both UWA and the Curtin Institute for Radio Astronomy (CIRA).
ICRAR has strong support from the government of Australia and is working closely with industry and the astronomy community, including CSIRO and the Australian Telescope National Facility, <a
ICRAR is:

Playing a key role in the international Square Kilometre Array (SKA) project, the world's biggest ground-based telescope array.

Attracting some of the world’s leading researchers in radio astronomy, who will also contribute to national and international scientific and technical programs for SKA and ASKAP.
Creating a collaborative environment for scientists and engineers to engage and work with industry to produce studies, prototypes and systems linked to the overall scientific success of the SKA, MWA and ASKAP.

Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)

A Small part of the Murchison Widefield Array

Enhancing Australia’s position in the international SKA program by contributing to the development process for the SKA in scientific, technological and operational areas.
Promoting scientific, technical, commercial and educational opportunities through public outreach, educational material, training students and collaborative developments with national and international educational organisations.
Establishing and maintaining a pool of emerging and top-level scientists and technologists in the disciplines related to radio astronomy through appointments and training.
Making world-class contributions to SKA science, with emphasis on the signature science themes associated with surveys for neutral hydrogen and variable (transient) radio sources.
Making world-class contributions to SKA capability with respect to developments in the areas of Data Intensive Science and support for the Murchison Radio-astronomy Observatory.