From Lawrence Berkeley National Lab: “A Next Step for GRETA: A Better Gamma-Ray Detector”

Berkeley Logo

From Lawrence Berkeley National Lab

November 7, 2018
Glenn Roberts Jr.
glennemail@gmail.com

A rendering of GRETA, the Gamma-Ray Energy Tracking Array. (Credit Berkeley Lab)

A new high-resolution gamma-ray detector system – designed to reveal new details about the structure and inner workings of atomic nuclei, and to elevate our understanding of matter and the stellar creation of elements – has passed an important project milestone.

When this system – the Gamma-Ray Energy Tracking Array, or GRETA – is combined with an existing detector array called GRETINA (for Gamma-Ray Energy Tracking In-beam Nuclear Array), it will create a full spherical array. Gamma rays are highly penetrating, highly energetic forms of light that are emitted from excited nuclear states.

LBNL GRETINA installed at National Superconducting Cyclotron Laboratory at Michigan State University

GRETINA was completed in 2011 and has demonstrated the power of a gamma-ray tracking detector for nuclear physics. The U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has had a leadership role in GRETINA and now GRETA. The GRETA project includes researchers at Argonne and Oak Ridge national laboratories and at Michigan State University.

Once complete, the detector system will reside first at Michigan State University’s Facility for Rare Isotope Beams (FRIB), a future DOE Office of Science User Facility that is under construction. FRIB will support the DOE Office of Science’s mission.

“GRETA will be a flagship instrument and a major workhorse for science at FRIB,” said Paul Fallon, GRETA project director and a senior staff scientist at Berkeley Lab.

GRETA will be used to study nuclear reactions in real time. It can study the creation of new nuclei as a high-energy beam smacks a target, for example – and detail the path of individual gamma rays through the detector, which is useful for reconstructing events to learn more about the properties of the event that triggered it.

“GRETA will have up to 100 times greater sensitivity than existing detectors for certain experiments,” Fallon added. “It will have both a high-efficiency and a high-energy resolution in measuring gamma-ray energies.”

Experiments that utilize GRETA will help to establish the limits on how many protons and neutrons can pack into an atomic nucleus and determine the structure of atomic nuclei.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

Bringing Science Solutions to the World

In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

A U.S. Department of Energy National Laboratory Operated by the University of California

University of California Seal

DOE Seal