From JHU HUB: “The fastest, hottest mission under the sun” Parker Solar Probe

Johns Hopkins

From JHU HUB

1
NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker.

The Parker Solar Probe shatters records as it prepares for its first solar encounter.

10.31.18
Geoff Brown

The Parker Solar Probe, designed, built, and operated by the Johns Hopkins Applied Physics Laboratory, now holds two operational records for a spacecraft and will continue to set new records during its seven-year mission to the sun.

The Parker Solar Probe is now the closest spacecraft to the sun—it passed the current record of 26.55 million miles from the sun’s surface at 1:04 p.m. on Monday, as calculated by the Parker Solar Probe team. As the mission progresses, the spacecraft will make a final close approach of 3.83 million miles from the sun’s surface, expected in 2024.

Also on Monday, Parker Solar Probe surpassed a speed of 153,454 miles per hour at 10:54 p.m., making it the fastest human-made object relative to the sun. The spacecraft will also accelerate over the course of the mission, achieving a top speed of about 430,000 miles per hour in 2024.

The previous records for closest solar approach and speed were set by the German-American Helios 2 spacecraft in April 1976.

“It’s been just 78 days since Parker Solar Probe launched, and we’ve now come closer to our star than any other spacecraft in history,” said project manager Andy Driesman of APL’s Space Exploration Sector. “It’s a proud moment for the team, though we remain focused on our first solar encounter, which begins [today].”

The Parker Solar Probe team periodically measures the spacecraft’s precise speed and position using NASA’s Deep Space Network, or DSN. The DSN sends a signal to the spacecraft, which then retransmits it back, allowing the team to determine the spacecraft’s speed and position based on the timing and characteristics of the signal. The Parker Solar Probe’s speed and position were calculated using DSN measurements made up to Oct. 24, and the team used that information along with known orbital forces to calculate the spacecraft’s speed and position from that point on.

NASA Deep Space Network

NASA Deep Space Network


NASA Deep Space Network dish, Goldstone, CA, USA


NASA Canberra, AU, Deep Space Network

The Parker Solar Probe will begin its first solar encounter today, continuing to fly closer and closer to the sun’s surface until it reaches its first perihelion—the name for the point where it is closest to the sun—at approximately 10:28 p.m. on Nov. 5, at a distance of about 15 million miles from the sun.

The spacecraft will face brutal heat and radiation while providing unprecedented, close-up observations of a star and helping us understand phenomena that have puzzled scientists for decades. These observations will add key knowledge to our understanding of the sun, where changing conditions can propagate out into the solar system, affecting Earth and other planets.

See the full article here .


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

About the Hub

We’ve been doing some thinking — quite a bit, actually — about all the things that go on at Johns Hopkins. Discovering the glue that holds the universe together, for example. Or unraveling the mysteries of Alzheimer’s disease. Or studying butterflies in flight to fine-tune the construction of aerial surveillance robots. Heady stuff, and a lot of it.

In fact, Johns Hopkins does so much, in so many places, that it’s hard to wrap your brain around it all. It’s too big, too disparate, too far-flung.

We created the Hub to be the news center for all this diverse, decentralized activity, a place where you can see what’s new, what’s important, what Johns Hopkins is up to that’s worth sharing. It’s where smart people (like you) can learn about all the smart stuff going on here.

At the Hub, you might read about cutting-edge cancer research or deep-trench diving vehicles or bionic arms. About the psychology of hoarders or the delicate work of restoring ancient manuscripts or the mad motor-skills brilliance of a guy who can solve a Rubik’s Cube in under eight seconds.

There’s no telling what you’ll find here because there’s no way of knowing what Johns Hopkins will do next. But when it happens, this is where you’ll find it.

Johns Hopkins Campus

The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.