From Sanford Underground Research Facility via SingularityHub: “This Breakthrough New Particle Accelerator Is Small But Mighty”

SURF logo
Sanford Underground levels

From Sanford Underground Research Facility

via

SingularityHub

Sep 04, 2018
Edd Gent

CERN AWAKE

Particle accelerators have become crucial tools for understanding the fundamental nature of our universe, but they are incredibly big and expensive. That could change, though, after scientists validated a new approach that could usher in a generation of smaller, more powerful accelerators.

The discovery of the Higgs Boson in 2012 was a scientific triumph that helped validate decades of theoretical research. But finding it required us to build the 17-mile–long Large Hadron Collider (LHC) beneath Switzerland and France, which cost about $13.25 billion.

LHC

CERN map


CERN LHC Tunnel

CERN LHC particles

CERN CMS Higgs Event


CERN ATLAS Higgs Event

Now scientists at CERN, the organization that runs the LHC, have published results of the first successful test of a proton-driven plasma wakefield accelerator in Nature. The machine is the first successful demonstration of an idea only dreamt up in 2009, which could achieve considerably higher energies over shorter distances than older approaches.

The idea of using wakefields to accelerate particles has been around since the 1970s. By firing a high–energy beam into a plasma—the fourth state of matter that is essentially a gas whose electrons have come loose from their atoms or molecules—it’s possible to get its soup of electrons to oscillate.

This creates something akin to the wake formed as a ship passes through water, and by shooting another beam of electrons into the plasma at a specific angle, you can get the electrons to effectively ride this plasma wave, accelerating them to much higher speeds.

Previous approaches have relied on lasers or electron beams to create these wakefields, but their energy dissipates quickly, so they can only accelerate particles over short distances. That means reaching higher energies would likely require multiple stages [Nature]. Protons, on the other hand, are easy to accelerate and can maintain high energies over very long distances, so a wakefield accelerator driven by them is able to accelerate particles to much higher speeds in a single stage.

In its first demonstration, the AWAKE experiment boosted electrons to 2 GeV, or 2 billion electronvolts (a measure of energy also commonly used as a unit of momentum in particle physics) over 10 meters. In theory, the same approach could achieve 1 TeV (1,000 GeV) if scaled up to 1 kilometer long (0.6 miles).

CERN AWAKE schematic


CERN AWAKE

That pales in significance compared to the energies reached by the LHC, which smashes protons together to reach peak energies of 13TeV. But proton collisions are messy, because they are made up of lots of smaller fundamental particles, so analyzing the results is a time-consuming and tricky task.

That’s why most designs for future accelerators plan to use lighter particles like electrons, which will create cleaner collisions [PhysicsWorld]. Current theories also consider electrons to be fundamental particles (i.e., they don’t break into smaller parts), but smashing them into other particles at higher speeds may prove that wrong [New Scientist].

These particles lose energy far quicker than protons in circular accelerators like the LHC, so most proposals are for linear accelerators. That means that unlike the LHC, where particles can be boosted repeatedly as they circulate around the ring multiple times, all the acceleration has to be done in a single go. The proposed International Linear Collider (ILC) is expected to cost $7 billion [Science] and will require a 20– to 40–kilometer-long tunnel to reach 0.25 TeV.

ILC schematic, being planned for the Kitakami highland, in the Iwate prefecture of northern Japan

That’s because, like the LHC, it will rely on radio frequency cavities, which bounce high-intensity radio waves around inside a metallic chamber to create an electric field that accelerates the particles. Reaching higher energies requires many such RF cavities and therefore long and costly tunnels. That makes the promise of reaching TeVs over just a few kilometers with proton-driven wakefield accelerators very promising.

But it’s probably a bit early to rip up the ILC’s designs quite yet. Building devices that can generate useful experimental results will require substantial improvements in the beam quality, which is currently somewhat lacking. The current approach also requires a powerful proton source—in this case, CERN’s Super Proton Synchrotron—so it’s more complicated than just building the accelerator.

The Super Proton Synchrotron (SPS), CERN’s second-largest accelerator.

Nonetheless, AWAKE deputy spokesperson Matthew Wing told Science that they could be doing practical experiments within five years, and within 20 years the technology could be used to convert the LHC into an electron-proton collider at roughly a 10th of the cost of a more conventional radio frequency cavity design.

5
Last year, physicists working on the Advanced Wakefield collaboration at CERN added an electron source and beamline (pictured) to their plasma wakefield accelerator. Maximilien Brice, Julien Ordan/CERN

That could make it possible to determine whether electrons truly are fundamental particles, potentially opening up entirely new frontiers in physics and rewriting our understanding of the universe.

See the full article here .


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

About us.
The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

Fermilab LBNE
LBNE