From Virginia Tech: “Large-scale simulations could shed light on the “dark” elements that make up most of our cosmos”

From Virginia Tech

August 16, 2018
Dan Rosplock

1
Large-scale structure of the universe resulting from a supercomputer simulation of the evolution of the universe. Credit: Habib et al./Argonne National Lab

If you only account for the matter we can see, our entire galaxy shouldn’t exist. The combined gravitational pull of every known moon, planet, and star should not have been strong enough to produce a system as dense and complex as the Milky Way. So what’s held it all together?

Scientists believe there is a large amount of additional matter in the universe that we can’t observe directly – so-called “dark matter.” While it is not known what dark matter is made of, its effects on light and gravity are apparent in the very structure of our galaxy. This, combined with the even more mysterious “dark energy” thought to be speeding up the universe’s expansion, could make up as much as 96 percent of the entire cosmos.

In an ambitious effort directed by Argonne National Laboratory, researchers at the Biocomplexity Institute of Virginia Tech are now attempting to estimate key features of the universe, including its relative distributions of dark matter and dark energy. The U.S. Department of Energy has approved nearly $1 million in funding for the research team, which has been tasked with leveraging large-scale computer simulations and developing new statistical methods to help us better understand these fundamental forces.

2

To capture the impact of dark matter and dark energy on current and future scientific observations, the research team plans to build on some of the powerful predictive technologies that have been employed by the Biocomplexity Institute to forecast the global spread of diseases like Zika and Ebola. Using observational data from sources like the Dark Energy Survey, scientists will attempt to better understand how these “dark” elements have influenced the evolution of the universe.

Dark Energy Survey


Dark Energy Camera [DECam], built at FNAL


NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam

“It sounds somewhat incredible, but we’ve done similar things in the past by combining statistical methods with supercomputer simulations, looking at epidemics,“ said Dave Higdon, a professor in the Biocomplexity Institute’s Social and Decision Analytics Laboratory. “Using statistical methods to combine input data on population, movement patterns, and the surrounding terrain with detailed simulations can forecast how health conditions in an area will evolve quite reliably—it will be an interesting test to see how well these same principles perform on a cosmic scale.”

If this effort is successful, results will benefit upcoming cosmological surveys and may shed light on a number of mysteries regarding the makeup and evolution of dark matter and dark energy. What’s more, by reverse engineering the evolution of these elements, they could provide unique insights into more than 14 billion years of cosmic history.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

Virginia Polytechnic Institute and State University, commonly known as Virginia Tech and by the initialisms VT and VPI,[8] is an American public, land-grant, research university with a main campus in Blacksburg, Virginia, educational facilities in six regions statewide, and a study-abroad site in Lugano, Switzerland. Through its Corps of Cadets ROTC program, Virginia Tech is also designated as one of six senior military colleges in the United States.

As Virginia’s third-largest university, Virginia Tech offers 225 undergraduate and graduate degree programs to some 30,600 students and manages a research portfolio of $513 million, the largest of any university in Virginia.[9] The university fulfills its land-grant mission of transforming knowledge to practice through technological leadership and by fueling economic growth and job creation locally, regionally, and across Virginia.

Virginia Polytechnic Institute and State University officially opened on Oct. 1, 1872, as Virginia’s white land-grant institution (Hampton Normal and Industrial Institute, founded in 1868, was designated the commonwealth’s first black land-grant school. This continued until 1920, when the funds were shifted by the legislature to the Virginia Normal and Industrial Institute in Petersburg, which in 1946 was renamed to Virginia State University by the legislature). During its existence, the university has operated under four different legal names. The founding name was Virginia Agricultural and Mechanical College. Following a reorganization of the college in the 1890s, the state legislature changed the name to Virginia Agricultural and Mechanical College and Polytechnic Institute, effective March 5, 1896. Faced with such an unwieldy name, people began calling it Virginia Polytechnic Institute, or simply VPI. On June 23, 1944, the legislature followed suit, officially changing the name to Virginia Polytechnic Institute. At the same time, the commonwealth moved most women’s programs from VPI to nearby Radford College, and that school’s official name became Radford College, Women’s Division of Virginia Polytechnic Institute. The commonwealth dissolved the affiliation between the two colleges in 1964. The state legislature sanctioned university status for VPI and bestowed upon it the present legal name, Virginia Polytechnic Institute and State University, effective June 26, 1970. While some older alumni and other friends of the university continue to call it VPI, its most popular–and its official—nickname today is Virginia Tech.