From Exascale Computing Project: “ECP Announces New Co-Design Center to Focus on Exascale Machine Learning Technologies”

From Exascale Computing Project

07/20/18

The Exascale Computing Project has initiated its sixth Co-Design Center, ExaLearn, to be led by Principal Investigator Francis J. Alexander, Deputy Director of the Computational Science Initiative at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory.

1
Francis J. Alexander. BNL


ExaLearn is a co-design center for Exascale Machine Learning (ML) Technologies and is a collaboration initially consisting of experts from eight multipurpose DOE labs.

Brookhaven National Laboratory (Francis J. Alexander)
Argonne National Laboratory (Ian Foster)
Lawrence Berkeley National Laboratory (Peter Nugent)
Lawrence Livermore National Laboratory (Brian van Essen)
Los Alamos National Laboratory (Aric Hagberg)
Oak Ridge National Laboratory (David Womble)
Pacific Northwest National Laboratory (James Ang)
Sandia National Laboratories (Michael Wolf)

Rapid growth in the amount of data and computational power is driving a revolution in machine learning (ML) and artificial intelligence (AI). Beyond the highly visible successes in machine-based natural language translation, these new ML technologies have profound implications for computational and experimental science and engineering and the exascale computing systems that DOE is deploying to support those disciplines.

To address these challenges, the ExaLearn co-design center will provide exascale ML software for use by ECP Applications projects, other ECP Co-Design Centers and DOE experimental facilities and leadership class computing facilities. The ExaLearn Co-Design Center will also collaborate with ECP PathForward vendors on the development of exascale ML software.

The timeliness of ExaLearn’s proposed work ties into the critical national need to enhance economic development through science and technology. It is increasingly clear that advances in learning technologies have profound societal implications and that continued U.S. economic leadership requires a focused effort, both to increase the performance of those technologies and to expand their applications. Linking exascale computing and learning technologies represents a timely opportunity to address those goals.

The practical end product will be a scalable and sustainable ML software framework that allows application scientists and the applied mathematics and computer science communities to engage in co-design for learning. The new knowledge and services to be provided by ExaLearn are imperative for the nation to remain competitive in computational science and engineering by making effective use of future exascale systems.

“Our multi-laboratory team is very excited to have the opportunity to tackle some of the most important challenges in machine learning at the exascale,” Alexander said. “There is, of course, already a considerable investment by the private sector in machine learning. However, there is still much more to be done in order to enable advances in very important scientific and national security work we do at the Department of Energy. I am very happy to lead this effort on behalf of our collaborative team.”

See the full article here.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

About ECP

The ECP is a collaborative effort of two DOE organizations – the Office of Science and the National Nuclear Security Administration. As part of the National Strategic Computing initiative, ECP was established to accelerate delivery of a capable exascale ecosystem, encompassing applications, system software, hardware technologies and architectures, and workforce development to meet the scientific and national security mission needs of DOE in the early-2020s time frame.

About the Office of Science

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov/.

About NNSA

Established by Congress in 2000, NNSA is a semi-autonomous agency within the DOE responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing; works to reduce the global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological emergencies in the United States and abroad. https://nnsa.energy.gov

The Goal of ECP’s Application Development focus area is to deliver a broad array of comprehensive science-based computational applications that effectively utilize exascale HPC technology to provide breakthrough simulation and data analytic solutions for scientific discovery, energy assurance, economic competitiveness, health enhancement, and national security.

Awareness of ECP and its mission is growing and resonating—and for good reason. ECP is an incredible effort focused on advancing areas of key importance to our country: economic competiveness, breakthrough science and technology, and national security. And, fortunately, ECP has a foundation that bodes extremely well for the prospects of its success, with the demonstrably strong commitment of the US Department of Energy (DOE) and the talent of some of America’s best and brightest researchers.

ECP is composed of about 100 small teams of domain, computer, and computational scientists, and mathematicians from DOE labs, universities, and industry. We are tasked with building applications that will execute well on exascale systems, enabled by a robust exascale software stack, and supporting necessary vendor R&D to ensure the compute nodes and hardware infrastructure are adept and able to do the science that needs to be done with the first exascale platforms.

Advertisements