From Kavli Institute for the Physics and Mathematics of the Universe: “Study Finds Way to Use Quantum Entanglement to Study Black Holes”

KavliFoundation

The Kavli Foundation

Kavli IPMU
Kavli IMPU

April 23, 2018

A team of researchers has found a relationship between quantum physics, the study of very tiny phenomena, to thermodynamics, the study of very large phenomena, reports a new study this week in Nature Communications.

“Our function can describe a variety of systems from quantum states in electrons to, in principle, black holes,” says study author Masataka Watanabe.

Quantum entanglement is a phenomenon fundamental to quantum mechanics, where two separated regions share the same information. It is invaluable to a variety of applications including being used as a resource in quantum computation, or quantifying the amount of information stored in a black hole.

Quantum mechanics is known to preserve information, while thermal equilibrium seems to lose some part of it, and so understanding the relationship between these microscopic and macroscopic concepts is important. So a group of graduate students and a researcher at the University of Tokyo, including the Kavli Institute for the Physics and Mathematics of the Universe, investigated the role of the quantum entanglement in thermal equilibrium in an isolated quantum system.

1
Figure 1: Graph showing quantum entanglement and spatial distribution. When separating matter A and B, the vertical axis shows how much quantum entanglement there is, while the horizontal axis shows the length of matter A. (Credit: Nakagawa et al.)

“A pure quantum state stabilizing into thermal equilibrium can be compared to water being poured into a cup. In a quantum-mechanical system, the colliding water molecules create quantum entanglements, and these quantum entanglements will eventually lead a cup of water to thermal equilibrium. However, it has been a challenge to develop a theory which predicts how much quantum entanglement was inside because lots of quantum entanglements are created in complicated manners at thermal equilibrium,” says Watanabe.

In their study, the team identified a function predicting the spatial distribution of information stored in an equilibrated system, and they revealed that it was determined by thermodynamic entropy alone. Also, by carrying out computer simulations, they found that the spatial distribution remained the same regardless of what systems were used and regardless of how they reached thermal equilibrium.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Kavli IPMU (Kavli Institute for the Physics and Mathematics of the Universe) is an international research institute with English as its official language. The goal of the institute is to discover the fundamental laws of nature and to understand the Universe from the synergistic perspectives of mathematics, astronomy, and theoretical and experimental physics. The Institute for the Physics and Mathematics of the Universe (IPMU) was established in October 2007 under the World Premier International Research Center Initiative (WPI) of the Ministry of Education, Sports, Science and Technology in Japan with the University of Tokyo as the host institution. IPMU was designated as the first research institute within the University of Tokyo Institutes for Advanced Study (UTIAS) in January 2011. It received an endowment from The Kavli Foundation and was renamed the “Kavli Institute for the Physics and Mathematics of the Universe” in April 2012. Kavli IPMU is located on the Kashiwa campus of the University of Tokyo, and more than half of its full-time scientific members come from outside Japan. http://www.ipmu.jp/
Stem Education Coalition
The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

The Foundation’s mission is implemented through an international program of research institutes, professorships, and symposia in the fields of astrophysics, nanoscience, neuroscience, and theoretical physics as well as prizes in the fields of astrophysics, nanoscience, and neuroscience.