From Webb: “NASA’s James Webb Space Telescope Could Potentially Detect the First Stars and Black Holes”

NASA Webb Header

NASA Webb Telescope

James Webb Space Telescope

April 25, 2018

Christine Pulliam
Space Telescope Science Institute, Baltimore, MD, USA
Rogier Windhorst
Arizona State University, Tempe, AZ, USA

Gravitational Lensing NASA/ESA

One of the key science goals of NASA’s James Webb Space Telescope is to learn about “first light,” the moment when the first stars and galaxies lit the universe. While the first galaxies will be within Webb’s reach, individual stars shine so faintly that Webb would not be able to detect them without help. That help could come in the form of natural magnification from gravitational lensing, according to a new theoretical paper.

NASA’s James Webb Space Telescope Could Potentially Detect the First Stars and Black Holes
Gravitational lensing by a galaxy cluster could bring the early universe into focus for Webb

A cluster of galaxies can provide the needed gravitational oomph to bring distant objects into focus via lensing. Typical gravitational lensing can boost a target’s brightness by a factor of 10 to 20. But in special circumstances, the light of a faraway star could be amplified by 10,000 times or more.

If Webb monitors several galaxy clusters a couple of times a year over its lifetime, chances are good that it will detect such a magnified star, or possibly the accretion disk of a black hole from the same era. This would give astronomers a key opportunity to learn about the actual properties of the early universe and compare them to computer models.

The first stars in the universe blazed to life about 200 to 400 million years after the big bang. Observing those very first individual stars across such vast distances of space normally would be a feat beyond any space telescope. However, new theoretical work suggests that under the right circumstances, and with a little luck, NASA’s upcoming James Webb Space Telescope will be able to capture light from single stars within that first generation of stars.

“Looking for the first stars and black holes has long been a goal of astronomy. They will tell us about the actual properties of the very early universe, things we’ve only modeled on our computers until now,” said Rogier Windhorst of Arizona State University, Tempe. Windhorst is lead author of the paper that appeared in the Astrophysical Journal Supplement on February 14, 2018.

“We want to answer questions about the early universe such as, were binary stars common or were most stars single? How many heavy chemical elements were produced, cooked up by the very first stars, and how did those first stars effect star formation?” added co-author Frank Timmes of Arizona State University.

The key will be to look for a star that has been gravitationally lensed, its light bent and magnified by the gravity of an intervening galaxy cluster. But not just any gravitational lensing will do. Typical gravitational lensing can magnify light by a factor of 10 to 20 times, not enough to make a first-generation star visible to Webb.

3
This diagram illustrates how rays of light from a distant galaxy or star can be bent by the gravity of an intervening galaxy cluster. As a result, an observer on Earth sees the distant object appear brighter than it would look if it weren’t gravitationally lensed. CREDIT: NASA, ESA, and A. Feild and F. Summers (STScI)

But if the distant star and closer galaxy cluster line up just right, the star’s light can be amplified 10,000 times or more, bringing it within the realm of detectability. This could be done via so-called cluster caustic transits, where the light from a first star candidate could be enormously magnified for a few months due to the motion of the galaxy cluster across the sky.

The chances of such a precise alignment are small, but not zero. Astronomers recently announced that Hubble spotted a super-magnified star known as “Icarus.” Although it was the farthest single star ever seen, it was much closer than the stars Webb might locate. With Webb, the team hopes to find a lensed example of a star that formed from the primordial mix of hydrogen and helium that suffused the early universe, which astronomers call Population III stars.

In addition to the first stars, Windhorst and his colleagues investigated the possibility of seeing accretion disks surrounding the first black holes. Such a black hole, formed by the cataclysmic death of a massive star, could shine brightly if it pulled gas from a companion star.

The longer an object shines, the more likely it will drift into alignment with a gravitational lens. First-generation stars are expected to have been both massive and short-lived, lasting for just a few million years before exploding as supernovae. In contrast, a black hole stripping a companion star could shine for 10 times longer, feeding from a steady stream of gas. As a result, Webb might detect more black hole accretion disks than early stars.

The team calculates that an observing program that targets several galaxy clusters a couple of times a year for the lifetime of Webb could succeed in finding a lensed first star or black hole accretion disk. They have already selected some of the best target clusters, including the Hubble Frontier Fields clusters and the cluster known as “El Gordo.”

“We just have to get lucky and observe these clusters long enough,” said Windhorst. “The astronomical community would need to continue to monitor these clusters during Webb’s lifetime.”

The authors of the Astrophysical Journal Supplement paper are R. Windhorst and F. Timmes (Arizona State University), S. Wyithe (University of Melbourne), M. Alpaslan (New York University), S. Andrews (The University of Western Australia), D. Coe (Space Telescope Science Institute), J. Diego (IFCA), M. Dijkstra (University of Oslo), S. Driver (The University of Western Australia), P. Kelly (University of Minnesota, Twin Cities), and D. Kim (Arizona State University).

______________________________________________________________
The James Webb Space Telescope will be the world’s premier space science observatory. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, the European Space Agency (ESA) and the Canadian Space Agency (CSA).
______________________________________________________________

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

The James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for later in the decade.

Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

Webb is an international collaboration between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRspec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

NASA Webb NIRCam

NASA Webb NIRspec

NASA Webb MIRI

CSA Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS


Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

NASA image

ESA50 Logo large

Canadian Space Agency