From ESOblog: “Protecting the Earth from Cosmic Clashes”

ESO 50 Large


Science in Society

65 million years ago, the most famous asteroid in history slammed into Earth and most likely exterminated the dinosaurs. Disconcertingly, we are no less likely to be to hit by an asteroid today than our ancient reptilian counterparts were — but luckily we have helpful tools at our disposal. In 2015 ESO joined the International Asteroid Warning Network (IAWN). To find out what this entails, we talked to Andy Williams, ESO’s Institutional Relations Officer, and Olivier Hainaut, an ESO astronomer in charge of NEO follow-up at the VLT.

Q: What are asteroids and why should we be worried about them?

Oli: An asteroid is “just” a rock, or a pile of rocks, that orbits the Sun. Some asteroids are dead comets — those that have lost their ices so the comet is covered by a rocky crust. My work at ESO focuses on minor bodies such as asteroids, comets and trans-Neptunian objects — including those with the potential to smash into Earth. We call these Near-Earth Objects, or NEOs. Currently, we know of about 17 000 asteroids and 100 comets that are classified as NEOs.

Meteor Crater on the Colorado Plateau in Arizona. This crater is 1.2 kilometres in diameter and was created by a 46-metre asteroid 50 000 years ago.
Credit: NASA Earth Observatory

A key number to remember with NEOs is 10: if an asteroid 10 metres across hit Earth, it would release about the same amount of energy as the Hiroshima bomb. As its effect would be localised to within a few square kilometres around the impact site, it’s unlikely to do a large amount of damage. Remember that the surface area of the Earth is huge and a lot of it is taken up by the ocean, so it would be incredibly unlikely — and extremely unlucky — for an asteroid 10 metres across to severely damage a populated area. But the energy that an object releases is proportional to the cube of its size — so in comparison, a 100-metre asteroid (with the same composition and speed as the 10-metre asteroid) would release 1000 Hiroshimas. An asteroid with a diameter of one kilometre would do much greater damage, and an asteroid of 10 kilometres would be like the one that killed off the dinosaurs. It would sterilise an entire continent and cause major global damage.

On average, one of these huge 10-km asteroids strikes Earth every 50 million years, and the last one was 65 million years ago — meaning we are now overdue. Of course, I should mention that I’m not too worried about an asteroid wiping out all of humanity. We know about most asteroids of this size in the Solar System – we’ve studied their orbits, their characteristics, and we can predict their chance of impact. But as the asteroids get smaller, the less we know of them. We estimate that about 70–80% of asteroids from 500 metres to 1 kilometre in diameter are known, but only about 10% of asteroids 100 metres in diameter are known. The International Asteroid Warning Network (IAWN) is working to improve these numbers.

Q: So what is the IAWN?

Andy: The International Asteroid Warning Network aims to detect, track, and physically characterise Near-Earth Objects to determine which are potentially dangerous to Earth. The network is made up of scientific institutions, observatories, and a variety of interested groups — all of which can make observations of asteroids and NEOs. Participation in the network is voluntary and partners are funded with their own resources. They also agree to a policy of free and open exchange of all data submitted to the network.

Credit: Dan Durda

Q: How did the IAWN form?

Andy: The network has its roots in the United Nations Committee on the Peaceful Uses of Outer Space (UN COPUOS), which was established in 1959 shortly after the launch of Sputnik. NEO detection happened for years by observatories around the world, including ESO, but in 2002 the UN committee decided there should be a single team to oversee the detection, risk analysis and communication of NEOs and their dangers. By 2008 two vital organisations had been set up: the International Asteroid Warning Network (IAWN) and the Space Mission Planning Advisory Group (SMPAG). The establishment of these groups marked a tangible and essential step in protecting Earth from potential asteroid impacts, and the IAWN, in particular, was crucial in collecting and sharing information about potential space hazards. Then in 2013, the Science and Technology subcommittee (STSC) gave IAWN the official role of NEO detection. By cosmic coincidence the Chelyabinsk meteorite struck the atmosphere above Russia on 15 February 2013 during the STSC meeting, giving immediate impetus to this work!

A photo from the first COPUOUS meeting. Credit: UN Photo

Q: What is ESO’s role in the IAWN?

Oli: To search for asteroids you need a survey-type instrument such as Pan-STARRS, which continuously scans the whole sky with the aim of detecting moving objects. ESO’s telescopes are very powerful, but have a narrow field of view and so are used to observe specific objects; in other words, they are not suitable for discovering NEOs. So we work as part of a team. Other huge surveys detect asteroids, some of which are considered potentially hazardous — and some of these are threatening enough get on ESO’s “to-do list”. Our role is to target the high-risk asteroids that no other observatory can observe. If an object is small or far away, only big telescopes like ESO’s Very Large Telescope get called on to hone in and measure it.

In collaboration with ESA, we’ve run an ongoing project on the VLT since 2015. The project is awarded 24 hours of observing time per year, and while this time is modest, it’s enough to follow-up all the potentially dangerous NEOs that cannot be observed by smaller telescopes. 58 high risk or difficult NEOs have been observed by the VLT so far, 24 of which were removed from the risk list—the others are still on the list, despite the VLT observations.

Andy: It’s really important to note that as an intergovernmental organisation, ESO has a great responsibility to the public who ultimately pay for what we do. The Director General decides on the 24 hours set aside per year for asteroid observations using the VLT.

Q: How do we calculate the risk and the probability of an asteroid hitting Earth?

Andy: Short answer: it’s complicated. The risk is a combination of the likelihood that an asteroid will strike, how soon it will strike, and the effects it would have on Earth. Astronomers use the Palermo Technical Impact Hazard Scale, which combines these values and also compares it to the ‘background’ level of risk. We have to consider many variables.

Firstly, the orbit of the asteroid must be determined, along with the chance its path could intersect with Earth’s and when this would happen. Next, the size of the asteroid is vital, as it provides the main indicator of its danger — a large asteroid would slam into Earth’s surface intact, while a smaller one would burn up harmlessly in our atmosphere. The danger also depends on composition; some asteroids are basically huge chunks of iron ore, which can hold together as they pass through the atmosphere, while others are loosely-bound dust, ice and rocks, which burn up more easily. Then we must consider the angle of incidence — whether the asteroid travels straight down or at an angle, passing through much more of the atmosphere. In this case, the asteroid experiences more friction and is more likely to reduce in size (and danger) or be vaporised altogether. For most NEOs, these parameters are unknown, so we have to work with average, typical values.
The Chelyabinsk asteroid that struck Russia in February 2013 passed through Earth’s atmosphere at a 20-degree angle and was quite small, approximately 20 metres across. It skimmed the atmosphere like a pebble over water and fortunately exploded before it reached the ground.

The Chelyabinsk meteoroid fell to Earth on February 15, streaking across the sky above the city of Chelyabinsk, Russia, at 9:20 am local time.
Credit: Marat Ahmetvaleev

Q: What happens if we find an asteroid at high risk of hitting Earth?

Andy: Certain criteria have been set up that trigger an impact response. If the probability of impact is greater than 1% for objects over 10 metres, IAWN must alert the Space Mission Planning Advisory Group (SMPAG), of which ESO became an observer on 11 October 2017. SMPAG then have the harder job of coming up with an international action plan and deciding on the criteria for action. If the probability of impact within 20 years is greater than 10% for objects over 20 metres, SMPAG must alert authorities and the United Nations to begin terrestrial planning, which includes determining a “risk corridor” on the earth’s surface. If the probability of impact within 50 years is greater than 1% for an object of over 50 metres, SMPAG must begin mission planning. Much of the current work of SMPAG involves analysing the various mission options.

Q: And what are those options?

Oli: There are many possible hazard mitigation methods that are being considered, all of which sound very dramatic and sci-fi. It might seem like the best option to avoid a large predicted impact is to destroy the asteroid — but this isn’t such a good idea. We don’t want to break up the asteroid because it would dramatically increase the number of impacts and the likelihood they’d hit human populations! Not to mention the difficulty of tracking all the fragments.

A close-up image of asteroid (25143) Itokawa taken by the Japanese spacecraft Hayabusa during its close approach in 2005.
Credit: JAXA

A much better option is to deflect the asteroid. One idea is to spray paint one side of the asteroid white, making it more reflective — so when photons from the Sun bounce off, their momentum will transfer to the asteroid, pushing it off course just enough to miss Earth. This technique is based on the phenomenon of the Yarkovsky effect. Another idea is to send up a small rocket to push the object gently off course over a long period — say, 10 years. Basically, if we know about a potential impact long enough in advance, we can do something about it. We already have the technology today.

Andy: Like Oli said, the extent of our preparedness will largely depend on the amount of time we have — obviously a 20-year warning will be different to a 2-day warning! Lots of people are thinking about mitigating the hazard of asteroids — NASA has the Asteroid Impact and Deflection Assessment (AIDA) Mission, and ESA used to have Asteroid Impact Mission (AIM) although at present its funding is unclear.

Q: Does the recent discovery of the interstellar asteroid `Oumuamua affect our understanding of NEOs?

Oli: Our team at Pan-STARRS first spotted the `Oumuamua asteroid.

Pann-STARS telescope, U Hawaii, Mauna Kea, Hawaii, USA, 4,207 m (13,802 ft) above sea level

This was an interstellar object — the first ever discovered — that briefly became a Near-Earth Object, except it was travelling much faster, meaning it would have been extremely damaging if it struck the Earth.

We think that over its lifetime, our Sun has ejected tens of trillions of objects into interstellar space, so it’s reasonable to assume that other stars, including our neighbours, have done the same. This means there are a huge number of interstellar objects travelling through space. But when you compare this with the sheer scale of the Universe, the likelihood of even coming across one is exceedingly slim — and the chances of an interstellar asteroid striking the Earth are negligible. Furthermore, there would be not much we could do to mitigate such an impact because we’d have just a few weeks’ notice. It is better to focus our efforts on the much higher risk from our own Solar System’s NEOs.

See the full article here .

Please help promote STEM in your local schools.

Stem Education Coalition
Visit ESO in Social Media-




ESO Bloc Icon

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

ESO LaSilla
ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

ESO Vista Telescope
ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

ESO VLT Survey telescope
VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

ALMA Array
ALMA on the Chajnantor plateau at 5,000 metres.

ESO/E-ELT to be built at Cerro Armazones at 3,060 m.

APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

SPECULOOS four 1m-diameter robotic telescopes 2016 in the ESO Paranal Observatory, 2,635 metres (8,645 ft) above sea level

ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres