From Gemini: “Game Over for Supernovae Hide & Seek”

NOAO

Gemini Observatory
Gemini Observatory

January 12, 2018

The Core-collapse Supernova Rate Problem, or the fact that we don’t see as many core-collapse supernovae as we would expect, has a solution, thanks to research using the Gemini South telescope. The research team concludes that the majority of core collapse supernovae, exploding in luminous infrared galaxies, have previously not been found due to dust obscuration and poor spatial resolution.

1
SN 2013if with GeMS/GSAOI, from left to right with linear scaling: Reference image (June 2015), discovery image (April 2013) and the image subtraction. SN 2013if had a projected distance from the nucleus as small as 600 light years (200 pc), which makes it the second most nuclear CCSN discovery in a LIRG to date in the optical and near-IR after SN 2010cu.

Core-collapse supernovae are spectacular explosions that mark the violent deaths of massive stars. An international team of astronomers, led by PhD student Erik Kool of Macquarie University in Australia, used laser guide star imaging on the Gemini South telescope to study why we don’t see as many of these core-collapse supernovae as expected.

Gemini South Laser Guide Stars

The study began in 2015 with the Supernova UNmasked By InfraRed detection (SUNBIRD) project which has shown that dust obscuration and limited spatial resolution can explain the small number of detections to date.

In this, the first results of the SUNBIRD project, the team discovered three core-collapse supernovae, and one possible supernova that could not be confirmed with subsequent imaging. Remarkably, these supernovae were spotted as close as 600 light years from the bright nuclear regions of these galaxies – despite being at least 150 million light years from the Earth. “Because we observed in the near-infrared, the supernovae are less affected by dust extinction compared to optical light,” said Kool.

According to Kool the results coming from SUNBIRD reveal that their new approach provides a powerful tool for uncovering core-collapse supernova in nuclear regions of galaxies. They also conclude that this methodology is crucial in characterizing these supernova that are invisible through other means. Kool adds, “The supernova rate problem can be resolved using the unique multi-conjugate adaptive optics capability provided by Gemini, which allows us to achieve the highest spatial resolution in order to probe very close to the nuclear regions of galaxies.” This work is published in the Monthly Notices of the Royal Astronomical Society.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Gemini/North telescope at Maunakea, Hawaii, USA,4,207 m (13,802 ft) above sea level

Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

AURA Icon

Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.