From UCSC: “Two UCSC biologists receive Howard Hughes Medical Institute Professor awards”

UC Santa Cruz

UC Santa Cruz

December 13, 2017
Tim Stephens
stephens@ucsc.edu

1
Beth Shapiro (photo by C. Lagattuta)

2
Erika Zavaleta (photo by Matt Kroll)

With funding from the Howard Hughes Medical Institute (HHMI), biologists at UC Santa Cruz will be using biodiversity surveys and field research to get more students engaged in science.

Beth Shapiro and Erika Zavaleta, both professors of ecology and evolutionary biology, are among a select group of innovators in science education chosen this year for funding through the HHMI Professors Program.

Zavaleta’s proposal won her a five-year, $1 million grant to create an inclusive and coordinated pathway that will engage students in ecology and conservation biology and support them all the way through to graduation. The program will provide increased access to research-based field courses and internships, along with sustained mentoring and a supportive community.

“We have so many awesome field courses at UCSC, and I want to make sure they’re accessible to a full range of students and link them together into a pathway that will launch a diverse new generation of conservation leaders,” Zavaleta said.

Environmental DNA

Shapiro teamed up with Robert Wayne, a molecular ecologist at UCLA, to win a collaborative award of $1.5 million for a program to get large numbers of students involved in biodiversity surveys using environmental DNA. Environmental DNA (eDNA) is a highly sensitive molecular approach for cataloging biodiversity in any ecosystem by analyzing the DNA fragments found in soil and other environmental samples.

“Environmental DNA is both a powerful tool for doing cutting-edge science and a great way to get people interested in science,” Shapiro said. “It’s fairly easy for a first experience, and yet the range of questions you can address is incredibly broad. It’s a gateway to all kinds of different science.”

Shapiro and Wayne spearheaded the UC Conservation Genomics Consortium, which Wayne directs, and their HHMI project builds on the consortium’s work. Called Environmental DNA for Science Investigation and Education (eSIE), the three-tiered program starts with getting thousands of students involved in initial sampling efforts, either independently, with guidance from online instruction modules and mobile apps, or through organized sampling campaigns called “bioblitzes” at UC Natural Reserves and other sites throughout California. The consortium has been running bioblitzes through its CALeDNA project, and recruitment efforts are already under way to broaden the participation of students, including under-represented groups.

“We want them to go out and have a positive first experience participating in actual field work and collecting samples and data that will be used by scientists, including themselves if they want to keep doing it,” Shapiro said.

The second tier of the program will be a biodiversity course designed for both science majors and non-majors, using eDNA as a springboard for increasing science literacy and introducing students to some of the many ways science is relevant to important issues in society. Finally, the program includes funding to support students who want to do independent research projects with faculty mentors.

Field courses

Zavaleta’s program aims to build existing field research courses into a more coherent pathway that will guide students interested in ecology and conservation from their freshman or transfer year to graduation. Large introductory lecture courses required early in science majors are often blamed for attrition, and under-represented groups and disadvantaged students drop science majors at much higher rates than other students. Zavaleta said inquiry-based field courses and research opportunities provide experiences that can keep students engaged and inspired.

“By combining the emotional rewards of nature and friendship, shared experience and co-creation, field courses provide the kind of experience that led many, including me, to careers in ecology and conservation biology,” she said. “They also create the kind of immersive experience that is so important to learning and is a big part of forming an understanding of the natural world.”

Zavaleta wants to lower the barriers that can keep some students from participating in field courses by offering scholarships to cover course fees and building more capacity and diversity among the faculty and graduate students who teach the courses. She also wants to increase opportunities for undergraduates to get research experience through paid internships. A new staff mentorship position will help students take advantage of opportunities such as scholarships and research internships and will provide guidance throughout the program. These efforts will be coordinated and funded through a new Center to Advance Mentored, Inquiry-based Opportunities (CAMINO).

“The idea is to provide wraparound support and build a community for all kinds of students, so we avoid the situation where they get inspired by a great course and then fall of a cliff when they face the big lecture courses required before they can move on,” Zavaleta said. “It’s also important that we measure and communicate the outcomes of this effort so that we understand what works and can sustain it and scale it up.”

The HHMI Professors Program began in 2002, and Manuel Ares, professor of molecular, cell, and developmental biology at UCSC, was among that first cohort of HHMI Professors. This year, out of 177 proposals, only 12 were chosen for funding. In addition to producing two of the funded proposals, UC Santa Cruz submitted four of the 26 finalist proposals that made it through the first two rounds of peer review.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

UCO Lick Shane Telescope
UCO Lick Shane Telescope interior
Shane Telescope at UCO Lick Observatory, UCSC

Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

UC Santa Cruz campus
The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

UCSC is the home base for the Lick Observatory.

Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

Search for extraterrestrial intelligence expands at Lick Observatory
New instrument scans the sky for pulses of infrared light
March 23, 2015
By Hilary Lebow
1
The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

“Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

5
UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

“The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

“We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

“This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

“Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition