From astrobites: “Teaching Computers to Find Non-Transiting Hot Jupiters”

Astrobites bloc


Nov 3, 2017 |
Michael Hammer

Title: Supervised Learning Detection of Sixty Non-Transiting Hot Jupiter Candidates
Authors: Sarah Millholland, Greg Laughlin
First Author’s Institution: Yale University

Status: Accepted in AJ [open access]

When NASA’s Kepler Mission brought the transit method’s prospects for detecting an immense amount of planets in other star systems to fruition, it also brought a wondrous joyful feeling into the hearts and minds of astronomers and ordinary people who had long been dying to know if there were other planets out there and what they would look like. With that joy, however, comes the torment of knowing that most exoplanets do not transit their stars, leaving us to wonder if many of the stars still thought to be barren actually harbor planets.

In today’s paper, Sarah Millholland and Greg Laughlin attempt to alleviate some of that pain by searching over 140,000 of Kepler’s transit-less light curves for missing exoplanets that hopefully leave a different type of signature. When planets transit their stars, they block a small amount of light – typically about 1% for a moderately-sized planet that is not too far away, just enough for us to be able to see it happen. Can planets that do not transit also alter the amount of light coming their star system?

Figure 1. Example light curve for a transiting planet. The non-transiting part is called a phase curve. Even if the planet did not transit, it could still potentially be detected from the variations in “planet light” (orange) due to its different “moon-like” phases. Credit: NASA/JPL-Caltech/Univ. of Cambridge

See the full article here .

Please help promote STEM in your local schools.


Stem Education Coalition

What do we do?

Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
Why read Astrobites?

Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.