From Princeton: “Steven S. Gubser: Thunder and Lightning from Neutron Star mergers”

Princeton University
Princeton University

October 18, 2017
Steven S. Gubser

As of late 2015, we have a new way of probing the cosmos: gravitational radiation. Thanks to LIGO (the Laser Interferometer Gravitational-wave Observatory) and its new sibling Virgo (a similar interferometer in Italy), we can now “hear” the thumps and chirps of colliding massive objects in the universe.


VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation


Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

1
Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

Not for nothing has this soundtrack been described by LIGO scientists as “the music of the cosmos.” This music is at a frequency easily discerned by human hearing, from somewhat under a hundred hertz to several hundred hertz. Moreover, gravitational radiation, like sound, is wholly different from light. It is possible for heavy dark objects like black holes to produce mighty gravitational thumps without at the same time emitting any significant amount of light. Indeed, the first observations of gravitational waves came from black hole merger events whose total power briefly exceeded the light from all stars in the known universe. But we didn’t observe any light from these events at all, because almost all their power went into gravitational radiation.

In August 2017, LIGO and Virgo observed a collision of neutron stars which did produce observable light, notably in the form of gamma rays. Think of it as cosmic thunder and lightning, where the thunder is the gravitational waves and the lightning is the gamma rays. When we see a flash of ordinary lightning, we can count a few seconds until we hear the thunder. Knowing that sound travels one mile in about five seconds, we can reckon how distant the event is. The reason this method works is that light travels much faster than sound, so we can think of the transmission of light as instantaneous for purposes of our estimate.

Things are very different for the neutron star collision, in that the event took place about 130 million light years away, but the thunder and lightning arrived on earth pretty much simultaneously. To be precise, the thunder was first: LIGO and Virgo heard a basso rumble rising to a characteristic “whoop,” and just 1.7 seconds later, the Fermi and INTEGRAL experiments observed gamma ray bursts from a source whose location was consistent with the LIGO and Virgo observations.

NASA/Fermi Telescope

NASA/Fermi LAT

ESA/Integral

The production of gamma rays from merging neutron stars is not a simple process, so it’s not clear to me whether we can pin that 1.7 seconds down as a delay precisely due to the astrophysical production mechanisms; but at least we can say with some confidence that the propagation time of light and gravity waves are the same to within a few seconds over 130 million light years. From a certain point of view, that amounts to one of the most precise measurements in physics: the ratio of the speed of light to the speed of gravity equals 1, correct to about 14 decimal places or better.

The whole story adds up much more easily when we remember that gravitational waves are not sound at all. In fact, they’re nothing like ordinary sound, which is a longitudinal wave in air, where individual air molecules are swept forward and backward just a little as the sound waves pass them by. Gravitational waves instead involve transverse disturbances of spacetime, where space is stretched in one direction and squeezed in another—but both of those stretch-squeeze directions are at right angles to the direction of the wave. Light has a similar transverse quality: It is made up of electric and magnetic fields, again in directions that are at right angles to the direction in which the light travels. It turns out that a deep principle underlying both Maxwell’s electromagnetism and Einstein’s general relativity forces light and gravitational waves to be transverse. This principle is called gauge symmetry, and it also guarantees that photons and gravitons are massless, which implies in turn that they travel at the same speed regardless of wavelength.

It’s possible to have transverse sound waves: For instance, shearing waves in crystals are a form of sound. They typically travel at a different speed from longitudinal sound waves. No principle of gauge symmetry forbids longitudinal sound waves, and indeed they can be directly observed, along with their transverse cousins, in ordinary materials like metals. The gauge symmetries that forbid longitudinal light waves and longitudinal gravity waves are abstract, but a useful first cut at the idea is that there is extra information in electromagnetism and in gravity, kind of like an error-correcting code. A much more modest form of symmetry is enough to characterize the behavior of ordinary sound waves: It suffices to note that air (at macroscopic scales) is a uniform medium, so that nothing changes in a volume of air if we displace all of it by a constant distance.

In short, Maxwell’s and Einstein’s theories have a feeling of being overbuilt to guarantee a constant speed of propagation. And they cannot coexist peacefully as theories unless these speeds are identical. As we continue Einstein’s hunt for a unified theory combining electromagnetism and gravity, this highly symmetrical, overbuilt quality is one of our biggest clues.

The transverse nature of gravitational waves is immediately relevant to the latest LIGO / Virgo detection. It is responsible for the existence of blind spots in each of the three detectors (LIGO Hanford, LIGO Livingston, and Virgo). It seems like blind spots would be bad, but they actually turned out to be pretty convenient: The signal at Virgo was relatively weak, indicating that the direction of the source was close to one of its blind spots. This helped localize the event, and localizing the event helped astronomers home in on it with telescopes. Gamma rays were just the first non-gravitational signal observed: the subsequent light-show from the death throes of the merging neutron stars promises to challenge and improve our understanding of the complex astrophysical processes involved. And the combination of gravitational and electromagnetic observations will surely be a driver of new discoveries in years and decades to come.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition
Princeton University Campus

About Princeton: Overview

Princeton University is a vibrant community of scholarship and learning that stands in the nation’s service and in the service of all nations. Chartered in 1746, Princeton is the fourth-oldest college in the United States. Princeton is an independent, coeducational, nondenominational institution that provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences and engineering.

As a world-renowned research university, Princeton seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

Today, more than 1,100 faculty members instruct approximately 5,200 undergraduate students and 2,600 graduate students. The University’s generous financial aid program ensures that talented students from all economic backgrounds can afford a Princeton education.

Princeton Shield