From Weizmann via COSMOS: “Confirmed: cosmic rays blast from supernovae”

Weizmann Institute of Science logo

Weizmann Institute of Science

COSMOS
11 October 2017
Andrew Masterson

An exploded star first seen by 500 years ago helps astrophysicists to solve a cosmic conundrum.

1

Left. Composite image of the remnant of Tycho Brahe’s supernova (1572) using data from the Chandra x-ray satellite observatory (yellow, green, blue (credits NASA/SAO), from the Spitzer infrared satellite observatory (red, credits, NASA/JPL-Caltech), and from the Calar Alto observatory (stars white, credit, Krause et al.). The transparent magenta box shows the field of the ACAM instrument at the Cassegrain focus of the William Herschel Telescope (WHT, ORM, La Palma). Centre, a zoom-in on the ACAM field with a green box showing the size of the field of the 2d spectrograph GHaFaS (WHT, ORM). Right. The reduced and integrated image of GHaFaS in the emission from ionized hydrogen (Ha). NASA/SAO, NASA/JPL-Caltech

Ending an astronomical mystery, scientists have confirmed that cosmic rays – high energy subatomic particles – are produced within at least one supernova.

The rays, which consist primarily of protons and atomic nuclei, continuously bombard the Earth’s atmosphere. It’s been known for decades that they originate from outside the solar system, even perhaps outside the galaxy, but how and where they are created has until now remained obscure.

Now research published in The Astrophysical Journal finds that an as yet unknown mechanism within exploding stars is the likely source. The mechanism acts as an accelerator, producing an unexpectedly wide range of particle velocities that cannot be accounted for by the mass and temperature of the gases involved.

The discovery was made by a team led by astrophysicist Sladjana Knežević of the Weizmann Institute of Science in Israel, using as instrument known as GHaFaS, mounted on the 4.2m William Herschel Telescope at the Roque de los Muchachos Observatory in the Canary Islands.


ING 4 meter William Herschel Telescope at Roque de los Muchachos Observatory on La Palma in the Canary Islands, 2,396 m (7,861 ft)

The team focussed the instrument’s attention on a supernova known formally as SN 1572, but more commonly as Tycho’s supernova, after the pioneering astronomer Tycho Brahe who first recorded its existence in in 1572.

3
Remnant of SN 1572 as seen in X-ray light from the Chandra X-ray Observatory

NASA/Chandra Telescope

The supernova – more correctly, a supernova remnant – has been studied several times in recent years, including by British radio-astronomers in the 1950s, and observers at the California’s Mount Palomar Observatory a decade later. NASA’s orbiting Chandra X-ray Observatory imaged it in 2002

Caltech Palomar Observatory, located in San Diego County, California, US, at 1,712 m (5,617 ft)

None of these investigations, however, had sufficient resolution to test the hypothesis that supernovae may be the source of cosmic rays.

Using the Canary Islands facility, Knežević and his colleagues mapped a section of the dissipating cloud that surrounds the Tycho remnant, including a bright, visible filament. Measuring two levels of hydrogen emission spread, the team found that the results only made sense if somewhere in the remnant an accelerator was producing high energy particles.

The finding is the first time evidence for such a mechanism has been found, and appears to confirm supernovae as the source of cosmic rays.

The data has important implications for both astrophysics and particle physics.

The researchers now intend to combine their results with other measurements of Tycho’s supernova already taken by another facility on the Canary Islands, the larger Gran Telescopio Canariasto, to gain a clearer picture of cosmic ray acceleration.


Gran Telescopio Canarias at the Roque de los Muchachos Observatory on the island of La Palma, in the Canaries, Spain, sited on a volcanic peak 2,267 metres (7,438 ft) above sea level

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Weizmann Institute Campus

The Weizmann Institute of Science is one of the world’s leading multidisciplinary research institutions. Hundreds of scientists, laboratory technicians and research students working on its lushly landscaped campus embark daily on fascinating journeys into the unknown, seeking to improve our understanding of nature and our place within it.

Guiding these scientists is the spirit of inquiry so characteristic of the human race. It is this spirit that propelled humans upward along the evolutionary ladder, helping them reach their utmost heights. It prompted humankind to pursue agriculture, learn to build lodgings, invent writing, harness electricity to power emerging technologies, observe distant galaxies, design drugs to combat various diseases, develop new materials and decipher the genetic code embedded in all the plants and animals on Earth.

The quest to maintain this increasing momentum compels Weizmann Institute scientists to seek out places that have not yet been reached by the human mind. What awaits us in these places? No one has the answer to this question. But one thing is certain – the journey fired by curiosity will lead onward to a better future.