From University of Michigan: “Using University of Michigan buildings as batteries”

U Michigan bloc

University of Michigan

September 21, 2017 [hiding your light under a bushel?]
Dan Newman

How a building’s thermal energy can help the power grid accommodate more renewable energy sources.

1
Connor Flynn, an energy engineer with the Energy Management team, helps Aditya Keskar, a master’s student in electrical and computer engineering, retrieve data from a campus building’s HVAC system.
No image credit.

Michigan researchers and staff are testing how to use the immense thermal energy of large buildings as theoretical battery packs. The goal is to help the nation’s grid better accommodate renewable energy sources, such as wind and solar.

For power grids, supply must closely track demand to ensure smooth delivery of electric power. Incorporating renewable energy sources into the grid introduces a large degree of unpredictability to the system. For example, peak solar generation occurs during the day, while peak electricity demand occurs in the evening. Because of this, California, the leading solar producer in the U.S., has had to pay other states to take excess electricity off of its grid, and at other times simply wasted potential electricity by disconnecting solar panels.

As renewable sources become more prevalent, so does the unpredictability and mismatched supply and demand, creating a growing problem in how to keep better control of both.

To address this, and help demand for electricity react to the variability of supply from renewable energy sources, an MCubed project is testing how buildings store energy.

The team consisted originally of project leader Johanna Mathieu, assistant professor of electrical engineering and computer science (EECS), Ian Hiskens, Vennema Professor of Engineering and professor of EECS, and Jeremiah Johnson, formerly an assistant professor at the School of Natural Resources and Environment and now an associate professor at North Carolina State University. Additionally, Dr. Sina Afshari, former postdoctoral researcher, helped set up the project on campus.

“The goal is to utilize a building as a big battery: dump energy in and pull energy out in a way that the occupants don’t know is going on and the building managers aren’t incurring any extra costs. That’s the holy grail,” Hiskens said. “You wouldn’t have to buy chemical batteries and dispose of them a few years later.”

Commercial buildings, like those around campus, use massive Heating, Ventilation, and Air Conditioning (HVAC) systems to keep occupants comfortable. Large buildings require a vast amount of energy to heat and cool, and their HVAC systems consume around 20% of the electricity generated in the United States.

However, the large building size also means any short-term changes in a thermostat will not be felt. This means a building can cut or increase power to its HVAC for a short time to help a power grid match supply and demand, while the building’s temperature remains unchanged.

2
Aditya Keskar downloads data from another campus building’s HVAC system.

Aditya Keskar, who is pursuing his masters in electrical engineering and computer science, has been working with staff to test these short-term changes in HVAC power consumption in three campus buildings.

“We’ve had immense support from the Plant Operations team and building managers. They’ve helped us gather baseline data over months, and implement the tests,” Keskar said. “With their help, we were able to make short-term adjustments to their HVAC system with no change in the actual temperature, and no complaints from building occupants.”

If there is a surplus of supply on the grid due to heavy wind production, for example, a building automation system (BAS), which controls an HVAC system, could automatically lower its thermostat settings in the summer and increase its energy use for fifteen minutes, and then raise the thermostat to balance the extra energy consumed. This action would soak up some of the excess electricity and help to maintain equilibrium on the grid.

If darker skies reduce the usual solar production, a BAS could raise its thermostat setting in the summer and decrease its energy use immediately, then lower the thermostat to balance the extra energy consumed.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

U MIchigan Campus

The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.