From STFC: “UK supporting Arctic project to build the most advanced space weather radar in the world”


23 August 2017
STFC Media Manager
Jake Gilmore
+44 (0)7970 99 4586

An artist’s impression of what EISCAT_3D’s central radar site will look like. (Credit: NIPR)

The most advanced space weather radar in the world is to be built in the Arctic by an international partnership including the UK, thanks to new investment from NERC [Science of the Environment], with scientific collaboration from STFC.

The EISCAT [European Incoherent Scatter Scientific Association]_3D radar will provide UK scientists with a cutting-edge tool to probe the upper atmosphere and near-Earth space, helping them understand the effects of space weather storms on technology, society and the environment.

The UK government has placed space weather on the National Risk Register, in recognition of the potential damage it can do to satellites, communications and power grids. Solar storms drive space weather, but one of the biggest challenges in space weather science is improving our understanding of how the Earth’s magnetic field and atmosphere responds to this. EISCAT_3D will give scientists the means to understand these connections.

Dr. Ian McCrea, from STFC RAL Space and the NERC Centre for Atmospheric Science, said:

“This announcement represents the culmination of 15 years effort to secure UK involvement in a facility which will be the most sophisticated of its kind in the world. With advanced capabilities based on state-of-the-art radar technology, this new radar will significantly expand the opportunities for our scientists to study the outermost regions of the Earth’s atmosphere and their interaction with the space environment.”

EISCAT_3D will provide us with a new way of spatially imaging the structure and dynamics of this important region, enabling us to contribute more effectively to growing international efforts to observe and forecast the effects of space weather, monitor the risks posed by space debris and probe the complex structure of the aurora.”

A key capability of the radar will be to measure an entire 3D volume of the upper atmosphere in unprecedented detail. This is necessary to understand how energetic particles and electrical currents from space affect both the upper and the lower atmosphere. Scientists will be able to take measurements across scales from hundreds of metres to hundreds of kilometres, providing exceptional detail and vast quantities of data, and opening the scope of research that can be carried out.

STFC’s RAL Space Director, Dr Chris Mutlow said:

“I’m delighted that we’re able to bring our heritage in studying space weather to this fantastic new radar with our international partners. The level of detail it will provide represents a significant leap in our ability to understand the effects of space weather on our atmosphere and monitor space debris. This is critical to our national infrastructure as well as scientific advancement.”

The northern hemisphere already hosts several EISCAT radars, situated in the so-called auroral oval – where you can see the northern lights or aurora borealis.

EISCAT Svalbard, Norway Radar

EISCAT radar dish in Kiruna, Sweden

EISCAT Ramfjordmoen facility (near Tromsø, Norway) in winter

EISCAT Sodankylä radar in Finland

They take measurements in a region of the Earth’s upper atmosphere called the ionosphere – from about 70 to 1000 km altitude. They sample the electron concentration and temperature, and the ion temperature and velocity at a range of altitudes along the radar beam direction. But the current EISCAT radars provide a single pencil beam, so researchers can only look at one small portion of the sky at a given time.

Dr Andrew Kavanagh, UK EISCAT Science Support, based at the British Antarctic Survey, said:

“The new EISCAT_3D radar will measure the ionosphere in lots of different directions simultaneously. It will be like having hundreds of radar dishes all operating together. This means we can easily see changes in the ionosphere and not miss important data: when our measurements change we will be able to say whether something had just appeared or faded or if something was moving through the beams. This is really important as it gives us information about how space weather effects evolve.”

Costing a total of £63m, the facility will be distributed across three sites in northern Scandinavia – in Skibotn, Norway, near Kiruna in Sweden, and near Kaaresuvanto in Finland. The project will start in September 2017 with site preparations beginning in summer 2018. The radar is expected to be operational in 2021.

The site in Skibotn, Norway will have a transmitter and receiver array, while the two other sites will have receiver arrays. These will generate beams that will ‘look into’ the transmitted beam and give researchers many intersection heights.

EISCAT Director, Dr Craig Heinselman, said:

“Building on over three and a half decades of scientific observations with the legacy EISCAT radars, this new multi-site phased-array radar will allow our international user community to investigate important questions about the physics of the near-Earth space environment. The radar will make measurements at least ten times faster and with ten times finer resolution than current systems.”

See the full article here .

Please help promote STEM in your local schools.


Stem Education Coalition

STFC Hartree Centre

Helping build a globally competitive, knowledge-based UK economy

We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.