From ESA: “How each Galileo satellite is tested ahead of launch”

ESA Space For Europe Banner

European Space Agency

31 July 2017
No writer credit found.

ESA/Galileo Spacecraft

1
Galileo in Maxwell chamber
Released 31/07/2017 11:28 am
Copyright ESA/OHB–S. Bury

A Galileo Full Operational Capability satellite inside the Maxwell test chamber of ESA’s Test Centre in the Netherlands. Note its search and rescue antenna, left, and main navigation antenna, covered in silver ‘single layer insulation’ as it will be in space. Two further S-band telemetry, tracking and telecommand antennas are seen jutting out of the satellite body to its left and right sides. These 9 m-high spike-lined walls enclose the hushed interior of the chamber, isolating the satellite from all external influences to assess its electromagnetic compatibility. Once its main door is sealed, the metal walls of the chamber form a ‘Faraday Cage’, screening out external electromagnetic signals. The ‘anechoic’ foam pyramids covering its interior absorb internal signals – as well as sound – to prevent any reflection, mimicking the infinite void of space. The satellite’s systems are then switched on to detect any harmful interference as its various elements operate together.

Each Galileo satellite must go through a rigorous test campaign to assure its readiness for the violence of launch, airlessness and temperature extremes of Earth orbit.

Each one is despatched to a unique location in Europe to ensure its readiness prior to launch: a 3000 sq m cleanroom complex nestled in sandy dunes along the Dutch coast, filled with test equipment to simulate all aspects of spaceflight.

The test centre in Noordwijk – Europe’s largest satellite test site – is part of ESA’s main technical centre, but it is maintained and operated on a commercial basis on behalf of the Agency by a private company created for the purpose: European Test Services (ETS) B.V.

“Our company was founded 2000 as a joint venture between two of Europe’s leading satellite environmental test companies, Intespace in France and IABG in Germany,” explains Pierre Destaing, ETS test programme support manager for Galileo.

2
Aerial view of ESA’s technical centre. ESA – Jan Van Haarlem/Gallery Imaging bv, CC BY-SA 3.0 IGO

“That business setup is a source of flexibility: there are 30–35 people working here throughout the year, but if extra specialists are needed for a given campaign we can call on our parent companies.”

ETS has been responsible for supporting many historic test campaigns – including space-certifying Europe’s 20-tonne ATV space truck and Envisat, the world’s largest civilian Earth-observing mission. But in terms of scale alone, its work with Galileo is the company’s greatest challenge.

ETS is about to complete its contracts with OHB System AG, covering the environmental test of 22 ‘Full Operational Capability’ Galileo satellites, preceded by the testing of the very first of the first–generation ‘In-Orbit Validation’ Galileo satellites on a previous, separate contract.

3
Galileo arrival. Released 31/07/2017 11:48 am. Copyright ESA/OHB–S. Bury.
Description

A Galileo Full Operational Capability satellite being slid out of its transport containers into the cleanroom environment of ESA’s ESTEC Test Centre in the Netherlands. Some 22 Galileo FOC satellites have gone through testing here, along with the very first Galileo ‘In-Orbit Validation’ satellites. The Test Centre contains a collection of facilities to simulate every aspect of the launch and space environments. Galileo’s search and rescue antenna is visible in the foreground, with the circular navigation antenna in the middle of the satellite.

The pressure has been steady to ensure satellites are available in time to meet Galileo’s launch schedule.

“Traffic management is a big part of the job – it’s like a game of Tetris.” Pierre comments. “We have a steady stream of Galileo satellites to accommodate, along with other missions such as the BepiColombo Mercury orbiter, Solar Orbiter, the Cheops exoplanet detector and currently the latest MetOp weather satellite, with a fixed set of test facilities.

“The biggest challenge is definitely ensuring that every project can have the access to the facility they need at the right time, which demands complicated logistics and security adherence.”

4
Moving Galileo. Released 31/07/2017 10:53 am. Copyright ESA–G. Porter, CC BY-SA 3.0 IGO

Task list for testing

ETS has built up to a steady rhythm with the OHB System team, typically accommodating multiple satellites in storage on site, at the same time as others undergo further active testing.

“When each new satellite arrives, it is first unpacked within the carefully filtered and air conditioned Test Centre environment,” explains Pierre.

5
Galileo beside Phenix chamber. Released 31/07/2017 11:53 am. Copyright ESA/OHB–S. Bury.
Description
A Galileo Full Operational Capability satellite being removed from the Phenix thermal vacuum chamber after a fortnight-long ‘hot and cold’ vacuum test.

“Its next stop is the Phenix thermal vacuum chamber within which the satellite undergoes ‘bake out’ – heated up to ensure a suitably pristine vacuum ahead of the turning on of sensitive instruments.

“This is followed by a prolonged, fortnight-long ‘hot and cold soak’ in vacuum to prove the spacecraft performance and workmanship. Next is radio-frequency testing in the Maxwell chamber – shielded against all external radio signals and coated in radio-absorbing foam, to simulate the infinite surroundings of space – to assess the performance of the satellite antennas as well as their compatibility with onboard systems.”

Also on the task list are mechanical properties measurements – pinpointing each individual satellite’s precise centre of mass and gravity. This is a requirement for compatibility with Galileo’s two types of launch vehicle types – Soyuz and Ariane 5 – as well as helping with controlling their orientation in a fuel-efficient way, elongating their working lifetimes in orbit.

And each satellite also needs to be plugged into the larger Galileo system for testing, to check its end-to-end compatibility as if already serving in space.

Each Galileo has its dedicated solar wings mounted – they come from Airbus Defence and Space in nearby Leiden – for performance testing. They are then brought into launch configuration, making the satellite ready for acoustic testing in the Large European Acoustic Facility where it is blasted with the equivalent noise of the various types of rocket at take-off.

“After further performance tests by OHB, the satellite is at its final stages of verification before shipment to Kourou: the alignment of its antennas and thrusters. Then the propulsion system is filled with neutral gas to check for any leaks – preparing for the actual fuelling of the satellite with hydrazine at the launch site.”

6
Galileo in acoustic test chamber. Released 31/07/2017 9:34 am. Copyright ESA/OHB–S. Bury
A Galileo Full Operational Capability satellite being prepared for testing inside ESA’s Large European Acoustic Facility, which subjects test items to the equivalent noise of launch – note the sound horns to the left. The satellite is in its launch configuration, so its solar arrays are folded up on each side.

Ahead of the majority of tests, ETS works closely with the OHB environmental test team to supply them with supporting information such as thermal and accelerometer data monitoring (typically adding up to dozens of different channels) as well as radio-frequency measurements: “It is ETS’ job to ensure that our customer, OHB , receives all the data they need from our infrastructure, operated in a suitably secure and clean mode.”

The company also needs to anticipate the sometimes formidable logistical needs of each test campaign – thermal vacuum testing for instance requires two liquid nitrogen trucks daily to top up on-site supplies, requiring 50 000 litres of superchilled nitrogen per day of each 14-day test.

Their future link with Galileo is not yet assured; ETS will put in a bid to test Europe’s next set of Galileo satellites – ‘Batch 3’ – for OHB along with other European competitors.

OHB Galileo Environmental test campaign Manager Stephen Bury comments, “OHB and ETS have had a long and successful collaborative relationship during Galileo testing, completing 20 out of the 22 satellites at Noordwijk to date, with the final two progressing well.

“All OHB and ETS employees are proud of their role in readying the current constellation for space, and we look forward to possibly returning to work with ETS in the future, for the next set of Galileo satellites awarded to OHB in Batch 3.”

Pierre concludes: “There’s something very special about working directly with the satellites, ahead of their trip to orbit.”

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

ESA50 Logo large

Advertisements