From JPL: “Large, Distant Comets More Common Than Previously Thought”



July 25, 2017
Elizabeth Landau
Jet Propulsion Laboratory, Pasadena, Calif.

This illustration shows how scientists used data from NASA’s WISE spacecraft to determine the nucleus sizes of comets. They subtracted a model of how dust and gas behave in comets in order to obtain the core size. Credit: NASA/JPL-Caltech.

An animation of a comet. Credit: NASA/JPL-Caltech.

Comets that take more than 200 years to make one revolution around the Sun are notoriously difficult to study. Because they spend most of their time far from our area of the solar system, many “long-period comets” will never approach the Sun in a person’s lifetime. In fact, those that travel inward from the Oort Cloud — a group of icy bodies beginning roughly 186 billion miles (300 billion kilometers) away from the Sun — can have periods of thousands or even millions of years.

Oort Cloud NASA

NASA’s WISE spacecraft, scanning the entire sky at infrared wavelengths, has delivered new insights about these distant wanderers.

NASA/WISE Telescope

Scientists found that there are about seven times more long-period comets measuring at least 0.6 miles (1 kilometer) across than had been predicted previously. They also found that long-period comets are on average up to twice as large as “Jupiter family comets,” whose orbits are shaped by Jupiter’s gravity and have periods of less than 20 years.

Researchers also observed that in eight months, three to five times as many long-period comets passed by the Sun than had been predicted. The findings are published in The Astronomical Journal.

“The number of comets speaks to the amount of material left over from the solar system’s formation,” said James Bauer, lead author of the study and now a research professor at the University of Maryland, College Park. “We now know that there are more relatively large chunks of ancient material coming from the Oort Cloud than we thought.”

The Oort Cloud is too distant to be seen by current telescopes, but is thought to be a spherical distribution of small icy bodies at the outermost edge of the solar system. The density of comets within it is low, so the odds of comets colliding within it are rare. Long-period comets that WISE observed probably got kicked out of the Oort Cloud millions of years ago. The observations were carried out during the spacecraft’s primary mission before it was renamed NEOWISE and reactivated to target near-Earth objects (NEOs).

“Our study is a rare look at objects perturbed out of the Oort Cloud,” said Amy Mainzer, study co-author based at NASA’s Jet Propulsion Laboratory, Pasadena, California, and principal investigator of the NEOWISE mission. “They are the most pristine examples of what the solar system was like when it formed.”

Astronomers already had broader estimates of how many long-period and Jupiter family comets are in our solar system, but had no good way of measuring the sizes of long-period comets. That is because a comet has a “coma,” a cloud of gas and dust that appears hazy in images and obscures the cometary nucleus. But by using the WISE data showing the infrared glow of this coma, scientists were able to “subtract” the coma from the overall comet and estimate the nucleus sizes of these comets. The data came from 2010 WISE observations of 95 Jupiter family comets and 56 long-period comets.

The results reinforce the idea that comets that pass by the Sun more often tend to be smaller than those spending much more time away from the Sun. That is because Jupiter family comets get more heat exposure, which causes volatile substances like water to sublimate and drag away other material from the comet’s surface as well.

“Our results mean there’s an evolutionary difference between Jupiter family and long-period comets,” Bauer said.

The existence of so many more long-period comets than predicted suggests that more of them have likely impacted planets, delivering icy materials from the outer reaches of the solar system.

Researchers also found clustering in the orbits of the long-period comets they studied, suggesting there could have been larger bodies that broke apart to form these groups.

The results will be important for assessing the likelihood of comets impacting our solar system’s planets, including Earth.

“Comets travel much faster than asteroids, and some of them are very big,” Mainzer said. “Studies like this will help us define what kind of hazard long-period comets may pose.”

NASA’s Jet Propulsion Laboratory in Pasadena, California, managed and operated WISE for NASA’s Science Mission Directorate in Washington. The NEOWISE project is funded by the Near Earth Object Observation Program, now part of NASA’s Planetary Defense Coordination Office. The spacecraft was put into hibernation mode in 2011 after twice scanned the entire sky, thereby completing its main objectives. In September 2013, WISE was reactivated, renamed NEOWISE and assigned a new mission to assist NASA’s efforts to identify potentially hazardous near-Earth objects.

For more information on WISE, visit:

See the full article here .

Please help promote STEM in your local schools.


Stem Education Coalition


Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

Caltech Logo

NASA image