From ESO: “Eyes Wide Open for MASCARA in Chile”

ESO 50 Large

European Southern Observatory

19 July 2017
Ignas Snellen
Leiden Observatory
Postbus 9513, 2300 RA Leiden, The Netherlands
snellen@strw.leidenuniv.nl

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
rhook@eso.org

Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

The Leiden/MASCARA (Multi-site All-Sky CAmeRA) station at ESO’s La Silla Observatory in Chile has achieved first light. This new facility will seek out transiting exoplanets as they pass in front of their bright parent stars and create a catalogue of targets for future exoplanet characterisation observations.

Planet transit. NASA/Ames

In June 2016, ESO reached an agreement with Leiden University to site a station of MASCARA at ESO’s La Silla Observatory in Chile, taking advantage of the excellent observing conditions of the southern hemisphere skies. This station is now made its first successful test observations.

The MASCARA station in Chile is the second to begin operations; the first station is in the northern hemisphere on the Roque de los Muchachos Observatory, on the island of La Palma in the Canary Islands.

Roque de los Muchachos Observatory located in the municipality of Garafía on the island of La Palma in the Canary Islands. The observatory site is operated by the Instituto de Astrofís

Each station contains a battery of cameras in a temperature-controlled enclosure which will monitor almost the entire sky visible from its location [1].

“Stations are needed in both the northern and southern hemisphere to obtain all-sky coverage,” says Ignas Snellen, of Leiden University and the MASCARA project lead. “With the second station at La Silla now in place, we can monitor almost all the brighter stars over the entire sky.”

Built by Leiden University in the Netherlands, MASCARA is a planet-hunting instrument. Its very compact and low-cost design appears unassuming, but is innovative, flexible and highly reliable. Consisting of five digital cameras with off-the-shelf components, this small planet-hunter takes repeated measurements of the brightnesses of thousands of stars and uses software to hunt for the slight dimming of a star’s light as a planet crosses the face of the star.

This exoplanet discovery method is called transit photometry. The planet’s size and orbit can be directly determined through this method, and in very bright systems the planet’s atmosphere can also be characterised by further observations with large telescopes such as ESO’s Very Large Telescope.

The main purpose of MASCARA is to find exoplanets around the brightest stars in the sky, currently not probed either by space or ground-based surveys. The target population for MASCARA consists mostly of “hot Jupiters” — large worlds that are physically similar to Jupiter but orbit very close to their parent star, resulting in high surface temperatures and orbital periods of only a few hours. Dozens of hot Jupiters have been discovered with the radial velocity exoplanet detection method, as they exert a noticeably gravitational influence on their host stars.

“Not much can yet be learned from the planets discovered via the radial velocity method, as they require significantly better direct imaging techniques to separate the light of these cool, old planets from that of their host stars,” comments Snellen. “In contrast, planets that transit their host stars can readily be characterised.”

MASCARA also has the potential to discover super-Earths and Neptune-sized planets. The project is expected to provide a catalogue of the brightest nearby targets for future exoplanet characterisation observations, particularly for detailed planetary atmosphere observations.
Notes

[1] MASCARA can monitor stars down to about magnitude 8.4 — roughly ten times fainter than can be seen with the naked eye on a clear dark night. Due to its design, MASCARA is less sensitive to weather condition than other observing instruments, and so observations may be made even when the sky is partially cloudy, thus extending observation times.

Read more about MASCARA on the ESO website
MASCARA website at Leiden University
Agreement to site MASCARA station at La Silla
Science paper on the design and operation of MASCARA

See the full article here .

Please help promote STEM in your local schools.
STEM Icon

Stem Education Coalition
Visit ESO in Social Media-

Facebook

Twitter

YouTube

ESO Bloc Icon

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

ESO LaSilla
ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

ESO VLT
VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO Vista Telescope
ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO NTT
ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

ESO VLT Survey telescope
VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

ALMA Array
ALMA on the Chajnantor plateau at 5,000 metres

ESO E-ELT
ESO/E-ELT to be built at Cerro Armazones at 3,060 m

ESO APEX
APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert

Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

Advertisements