From SDSS Science Blog: “Spotlight on APOGEE: Engineering with Garrett Ebelke”

SDSS Science blog bloc

Science Blog from the SDSS

July 5, 2017
David Whelan

We have featured the building and delivery of APOGEE-2 several times before (like here, here, and here), so you may recognize the person we are spotlighting today.

1
Garrett Ebelke (center), with his wife, Stefanie, and their daughter, Madeleine

Garrett grew up in Kansas, but took an early interest in triathlons that brought him to the University of Colorado at Boulder, with all of its lovely mountains, for college. While there, he majored in astronomy. He took a class in observational astronomy that sparked his interest in working with telescopes. So after graduation, when a position as a Telescope Technologist on the 2.5-m SDSS telescope at Apache Point Observatory opened up, he jumped on it…and has been associated with SDSS ever since.

When APOGEE-1 arrived to Apache Point Observatory in 2011, Garrett was working the day shift as a fiber optics technician. His job was to plug plates for each night’s observations. As the telescope shut down for regular summer maintenance, he was asked to support the installation of APOGEE-1. This was the first time that Garrett was exposed to the engineering side of astronomy, and he says that he “was very intrigued”. Below is a picture of Garrett in the clean room with APOGEE-1, along with Principal Investigator Steve Majewski, Instrument Scientist John Wilson, and project scientist Gail Zasowski.

2
From left to right: Garrett Ebelke, Gail Zasowski, Steve Majewski (reflected), and John Wilson, standing together in the clean room with the APOGEE-1 instrument.

After 18 months at APO, Garrett transitioned to a job as a Telescope Operations Specialist, in which he was up at night running the observations of the SDSS telescope. He used this opportunity to begin taking engineering courses during the daylight hours, so that he could build a better background for instrumentation in astronomy. After several years (and several courses), he was approached about taking place in a unique opportunity: building APOGEE-South.

3
Josh Peebles from Johns Hopkins is seen here preparing the collimator positioning actuator inside of a dewar for cryogenic testing.

In Garrett’s words: “Since I had seen both the day time plugging and night time operations, I was uniquely qualified to train the Chilean observers/pluggers. Shortly after, I began to design the Plugging and Mapping station with [Chief Engineer] French Leger. As I was handing this design off to French to finalize and fabricate, my wife Stefanie gave birth to our first daughter, Madeleine, and two weeks later, we relocated to Charlottesville, Virginia, so I could become involved in building the APOGEE-South instrument.” Talk about a busy two weeks.

From all accounts Garrett has stayed busy in Virginia ever since. It would take too long to explain everything that he has done to assist with the construction of APOGEE-South; suffice it to say that the end product, safely delivered and installed at Las Campanas Observatory, is a testament to his and many others’ hard work — see the team photo below. He has additionally assisted with upgrades at the University of Virginia’s Fan Mountain Observatory, and is in graduate school at Iowa State University pursuing a Master’s degree in Mechanical Engineering. Garrett says that his graduate coursework has been hugely beneficial to his work with APOGEE, and his impact on the team has been equally so.

4
APOGEE-South is being removed from its shipping container at the du Pont telescope, Las Campanas Observatory.

5
The APOGEE team in front of the instrument after it was delivered and installed in the instrument room at Las Campanas Observatory. Kneeling, from left: Garrett Ebelke, John Wilson, Jimmy Davidson. Middle: Matt Hall, Mita Tembe, Fred Hearty, Juan David Trujillo. Back: Nick MacDonald.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

After nearly a decade of design and construction, the Sloan Digital Sky Survey saw first light on its giant mosaic camera in 1998 and entered routine operations in 2000. While the collaboration and scope of the SDSS have changed over the years, many of its key principles have stayed fixed: the use of highly efficient instruments and software to enable astronomical surveys of unprecedented scientific reach, a commitment to creating high quality public data sets, and investigations that draw on the full range of expertise in a large international collaboration. The generous support of the Alfred P. Sloan Foundation has been crucial in all phases of the SDSS, alongside support from the Participating Institutions and national funding agencies in the U.S. and other countries.

The Sloan Digital Sky Survey has created the most detailed three-dimensional maps of the Universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects.

In its first five years of operations, the SDSS carried out deep multi-color imaging over 8000 square degrees and measured spectra of more than 700,000 celestial objects. With an ever-growing collaboration, SDSS-II (2005-2008) completed the original survey goals of imaging half the northern sky and mapping the 3-dimensional clustering of one million galaxies and 100,000 quasars. SDSS-II carried out two additional surveys: the Supernova Survey, which discovered and monitored hundreds of supernovae to measure the expansion history of the universe, and the Sloan Extension for Galactic Understanding and Exploration (SEGUE), which extended SDSS imaging towards the plane of the Galaxy and mapped the motions and composition of more than a quarter million Milky Way stars.

SDSS-III (2008-2014) undertook a major upgrade of the venerable SDSS spectrographs and added two powerful new instruments to execute an interweaved set of four surveys, mapping the clustering of galaxies and intergalactic gas in the distant universe (BOSS), the dynamics and chemical evolution of the Milky Way (SEGUE-2 and APOGEE), and the population of extra-solar giant planets (MARVELS).

The latest generation of the SDSS (SDSS-IV, 2014-2020) is extending precision cosmological measurements to a critical early phase of cosmic history (eBOSS), expanding its revolutionary infrared spectroscopic survey of the Galaxy in the northern and southern hemispheres (APOGEE-2), and for the first time using the Sloan spectrographs to make spatially resolved maps of individual galaxies (MaNGA).

This is the “Science blog” of the SDSS. Here you’ll find short descriptions of interesting scientific research and discoveries from the SDSS. We’ll also update on activities of the collaboration in public engagement and other arenas. We’d love to see your comments and questions about what you read here!

You can explore more on the SDSS Website.

Advertisements