From astrobites: “The Grass Might Be Redder on the Other Side”

Astrobites bloc

Astrobites

27 June 2017
Shang-Min Tsai

1
Artist’s impression of a habitable exoplanet covered in vegetation. A new study explores a spectral signature that might indicate the presence of life on an exoplanet. [Ph03nix1986]

Title: Natural and Artificial Spectral Edges in Exoplanets
Authors: Manasvi Lingam, Abraham Loeb
First Author’s Institution: Harvard-Smithsonian Center for Astrophysics

Status: Submitted to ApJL, open access

The explosion in the number of discovered exoplanets — especially some interesting systems with terrestrial planets in the habitable zone — has attracted a lot of attention. We are moving one step closer to the ultimate question: are we alone? Today’s paper looks at certain distinctive spectral features that could be caused by “extraterrestrial plants”, or even crazier: advanced civilizations.

The Sky Is Blue and All the Leaves Are Green

Ever wondered why most plants look green? The first answer you might get is because of chlorophyll, the green pigments responsible for photosynthesis. Plants carry out photosynthesis to convert water and CO2 into sugar and oxygen, using energy from the Sun. But one might further ask: why is chlorophyll green? Well, chlorophyll absorbs light primarily in the range from ~450 nm (blue) to ~650 nm (red). It operates in the visible spectrum range but is not as efficient in green light. So in visible light, the photons at green wavelength are reflected the most, producing the color that we see. This causes the small bump of the leaf reflectance near 500 nm (0.5 μm) in Figure 1. Note the sharp jump of reflectance starting around 0.7 μm and going into the infrared. This so-called “red edge” can be a useful feature for detecting vegetation on planets, since few substances in nature have such high reflectivity in that wavelength range. The strength of the red-edge feature is used on Earth to monitor the growth of vegetation (such as crops). Imagine if our eyes were a little more sensitive toward red; we would see the world very differently with plants turning red (and much brighter)!

2
Figure 1. The reflectance R for silicon-based solar cells (black) and plants (red), shown as a function of wavelength λ. The peaks in the reflectivity in the UV region of silicon and at 0.7 μm of plants are the distinct “spectral edges”. [Lingam & Loeb 2017]

We Need More Energy!

In today’s paper, the authors also boldly explore the possible “artificial spectral edges” — that is, advanced civilizations modifying the planet surface such that it changes the observable spectra as well. It is conceivable to assume that advanced civilizations would come up with a method to handle energy crises. One possible way is to harness a significant amount of energy from the star by constructing large arrays of solar cells. This is particularly relevant for tidally-locked planets around M-stars, such as Proxima b, where the dayside is permanently illuminated. The solar cells are made of semiconductors (typically silicon), which have an energy gap between the valence band and the conduction band. Photons with energies less than the band gap are scattered, causing high reflectance, similar to plants but at a shorter wavelength in UV. The authors explored a hypothetical scenario in which planets are covered with mega-scale arrays of solar cells, showing the reflectance for silicon-based solar cells in Figure 1.

2
Figure 2. Schematic illustration of terraforming on tidally locked exoplanets. Photovoltaic arrays on the day side are used to harness stellar energy, which is redistributed as heat and light on the night side. [Lingam & Loeb 2017]

Another similarity between natural vegetation and solar cells is that, on tidally locked planets, they most likely are only situated on the day side (see the schematic in Figure 2). Therefore, as the fraction of vegetation or solar cells varies during the orbit, the changes of photometric flux in different wavelengths could be analyzed to characterize the spectral features. The authors calculated the change in the reflected light contrast to be within the sensitivity of future telescopes, like WFIRST (10-3 ppm) and LUVOIR (10-4 ppm), provided that (i) the coverage is large enough, (ii) the viewing angle is favorable, and (iii) the cloud cover is limited.

Of course, this is not saying we are going to find extraterrestrial life tomorrow, but it is helpful to keep in mind the possible information hidden in the reflected light. After all, the last thing we want is to see the sign, yet miss it.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

What do we do?

Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
Why read Astrobites?

Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

Advertisements