From AAS NOVA: ” Hidden Black Holes Revealed?”

AASNOVA

American Astronomical Society

19 June 2017
Susanna Kohler

1
Artist’s illustration of the thick dust torus thought to surround supermassive black holes and their accretion disks. [ESA / V. Beckmann (NASA-GSFC)]

Supermassive black holes are thought to grow in heavily obscured environments. A new study now suggests that many of the brightest supermassive black holes around us may be escaping our detection as they hide in these environments.

2
The geometric dependence of AGN types in the unified AGN model. Type 1 AGN are viewed from an angle where the central engine is visible. In Type 2 AGN, the dusty torus obscures the central engine from view. [Urry & Padovani, 1995]

A Torus Puzzle

The centers of galaxies with bright, actively accreting supermassive black holes are known as active galactic nuclei, or AGN. According to a commonly accepted model for AGN, these rapidly growing black holes and their accretion disks are surrounded by a thick torus of dust. From certain angles, the torus can block our direct view of the central engines, changing how the AGN appears to us. AGN for which we can see the central engine are known as Type 1 AGN, whereas those with an obscured central region are classified as Type 2.

Oddly, the fraction of AGN classified as Type 2 decreases substantially with increasing luminosity; brighter AGN seem to be more likely to be unobscured. Why? One hypothesis is that the torus structure itself changes with changing AGN luminosity. In this model, the torus recedes as AGN become brighter, causing fewer of these AGN to be obscured from our view.

But a team of scientists led by Silvia Mateos (Institute of Physics of Cantabria, Spain) suggests that we may instead be missing the bigger picture. What if the problem is just that many of the brightest obscured AGN are too well hidden?

Geometry Matters

3
Type 2 AGN fraction vs. torus covering factor for AGN in the authors’ three luminosity bins. The black line shows the 1-to-1 relation describing the expected Type 2 AGN fraction; the black data points show the observed fraction. The red points show the best-fit model including the “missing” AGN, and the inset shows the covering-factor distribution for the missing sources. [Mateos et al. 2017]

Mateos and collaborators built a sample of nearly 200 X-ray-observed AGN from the Bright Ultra-hard XMM-Newton Survey (BUXS). They then determined the intrinsic fraction of these AGN that were obscured (i.e., classified as Type 2) at a given luminosity, for redshifts between 0.05 ≤ z ≤ 1.

ESA/XMM Newton

The team next used clumpy torus models to estimate the distributions of AGN covering factors, the geometric factor that describes the fraction of the sky around the AGN central engine that’s obscured.

The pointing directions for AGN should be randomly distributed, and geometry then dictates that the covering factor distributions combined over the total AGN population should match the intrinsic fraction of AGN classified as Type 2 AGN. Instead, the sample from BUXS reveals a “missing” population of high-covering-factor tori that we have yet to detect in X-rays.

Missing Sources

When they include the missing AGN, Mateos and collaborators find that the total fraction of Type 2 AGN is around 58%. They also show that more of these AGN are missing at higher luminosities. By including the missing ones, the total fraction of obscured AGN therefore has a much weaker dependence on luminosity than we thought — which suggests that the receding torus model isn’t necessary to explain observations.

Mateos and collaborators’ results support the idea that the majority of very bright, rapidly accreting supermassive black holes at redshifts of z ≤ 1 live in nuclear environments that are extremely obscured. These black holes are so well embedded in their environments that they’ve escaped detection in X-ray surveys thus far.

Citation

S. Mateos et al 2017 ApJL 841 L18. doi:10.3847/2041-8213/aa7268

Related Journal Articles
See the full article for a list of further references with links.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

1

AAS Mission and Vision Statement

The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

Adopted June 7, 2009

Advertisements