From Universe Today: “The Sun Probably Lost a Binary Twin Billions of Years Ago”

universe-today

Universe Today

14 June 2017
Matt Williams

1
Stardust in the Perseus Molecular Cloud, a star-forming region in the Perseus constellation. Credit & Copyright: Lorand Fenyes

For us Earthlings, life under a single Sun is just the way it is. But with the development of modern astronomy, we’ve become aware of the fact that the Universe is filled with binary and even triple star systems. Hence, if life does exist on planets beyond our Solar System, much of it could be accustomed to growing up under two or even three suns. For centuries, astronomers have wondered why this difference exists and how star systems came to be.

Whereas some astronomers argue that individual stars formed and acquired companions over time, others have suggested that systems began with multiple stars and lost their companions over time. According to a new study by a team from UC Berkeley and the Harvard-Smithsonian Center for Astrophysics (CfA), it appears that the Solar System (and other Sun-like stars) may have started out as binary system billions of years ago.

This study, titled Embedded Binaries and Their Dense Cores, was recently accepted for publication in the Monthly Notices of the Royal Astronomical Society. In it, Sarah I. Sadavoy – a radio astronomer from the Max Planck Institute for Astronomy and the CfA – and Steven W. Stahler (a theoretical physicist from UC Berkeley) explain how a radio surveys of a star nursery led them to conclude that all Sun-like stars began as binaries.

2
The dark molecular cloud, Barnard 68, is a stellar nursery that can only be studied using radio astronomy. Credit: FORS Team, 8.2-meter VLT Antu, ESO

ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO/FORS1

They began by examining the results of the first radio survey of the giant molecular cloud located about 600 light-years from Earth in the Perseus constellation – aka. the Perseus Molecular Cloud. This survey, known as the VLA/ALMA Nascent Disk and Multiplicity (VANDAM) survey, relied the Very Large Array in New Mexico and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to conduct the first survey of the young stars (<4 million years old) in this star-forming region.

ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

The two began their work together by conducting new observations of both single and binary stars within the dense core regions of the Perseus cloud. As Sadavoy explained in a Berkeley News press release, the duo were looking for clues as to whether young stars formed as individuals or in pairs:

“The idea that many stars form with a companion has been suggested before, but the question is: how many? Based on our simple model, we say that nearly all stars form with a companion. The Perseus cloud is generally considered a typical low-mass star-forming region, but our model needs to be checked in other clouds.”

Another interesting implication of the study has to do with something known as the “Nemesis hypothesis”. In the past, astronomers have conjectured that a companion star named “Nemesis” existed within our Solar System. This star was so-named because the theory held that it was responsible for kicking the asteroid which caused the extinction of the dinosaurs into Earth’s orbit. Alas, all attempts to find Nemesis ended in failure.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Advertisements