From phys.org: “Physicists review three experiments that hint at a phenomenon beyond the Standard Model of particle physics”

physdotorg
phys.org

June 8, 2017

1
Event display recorded by the BaBaR detector showing the decays of two B mesons into various subatomic particles, including a muon and a neutrino. Credit: SLAC NATIONAL ACCELERATOR LABORATORY

To anyone but a physicist, it sounds like something out of “Star Trek.” But lepton universality is a real thing.

It has to do with the Standard Model of particle physics, which describes and predicts the behavior of all known particles and forces, except gravity. Among them are charged leptons: electrons, muons and taus.

A fundamental assumption of the Standard Model is that the interactions of these elementary particles are the same despite their different masses and lifetimes. That’s lepton universality. Precision tests comparing processes involving electrons and muons have not revealed any definite violation of this assumption, but recent studies of the higher-mass tau lepton have produced observations that challenge the theory.

A new review of results from three experiments points to the strong possibility that lepton universality—and perhaps ultimately the Standard Model itself—may have to be revised. The findings by a team of international physicists, including UC Santa Barbara postdoctoral scholar Manuel Franco Sevilla, appear in the journal Nature.

“As part of my doctoral thesis at Stanford, which was based on earlier work carried out at UCSB by professors Jeff Richman and Michael Mazur, we saw the first significant observation of something beyond the Standard Model at the BaBaR experiment conducted at the SLAC National Accelerator Laboratory,” Franco Sevilla said.

The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

SLAC BABAR

This was significant but not definitive, he added, noting that similar results were seen in more recent experiments conducted in Japan (Belle) and in Switzerland (LHCb). According to Franco Sevilla, the three experiments, taken together, demonstrate a stronger result that challenges lepton universality at the level of four standard deviations, which indicates a 99.95 percent certainty.

BaBaR, which stands for B-Bbar (anti-B) detector, and Belle were carried out in B factories. These particle colliders are designed to produce and detect B mesons—unstable particles that result when powerful particle beams collide—so their properties and behavior can be measured with high precision in a clean environment. The LHCb (Large Hadron Collider b) provided a higher-energy environment that more readily produced B mesons and hundreds of other particles, making identification more difficult.

KEK Belle SuperKEKB accelerator

CERN/LHCb

Nonetheless, the three experiments, which measured the relative ratios of B meson decays, posted remarkably similar results. The rates for some decays involving the heavy lepton tau, relative to those involving the light leptons—electrons or muons—were higher than the Standard Model predictions.

“The tau lepton is key because the electron and the muon have been well measured,” Franco Sevilla explained. “Taus are much harder because they decay very quickly. Now that physicists are able to better study taus, we’re seeing that perhaps lepton universality is not satisfied as the Standard Model claims.”

While intriguing, the results are not considered sufficient to establish a violation of lepton universality. To overturn this long-held physics precept would require a significance of at least five standard deviations. However, Franco Sevilla noted, the fact that all three experiments observed a higher-than-expected tau decay rate while operating in different environments is noteworthy.

A confirmation of these results would point to new particles or interactions and could have profound implications for the understanding of particle physics. “We’re not sure what confirmation of these results will mean in the long term,” Franco Sevilla said. “First, we need to make sure that they’re true and then we’ll need ancillary experiments to determine the meaning.”

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

About Phys.org in 100 Words

Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

Advertisements