From ESO: “Taking the First Picture of a Black Hole”

ESO 50 Large

European Southern Observatory

No writer credit

[These blog posts are in reverse order because that is how I found them. I still have not found the link to the blog itself to do a proper job.]

4. How do Radio Telescopes work?

Can you imagine yourself hearing only the bass of a music recording? Or only seeing objects of a particular colour? Well, in a way, you experience this every day. The human eye can only detect a narrow part of the electromagnetic spectrum: a section we call visible light. But a broad range of electromagnetic waves exist with the same nature — for example radio waves, which have much longer wavelengths than the light we can detect with our eyes. Radio wavelengths range from 1 millimetre to over 10 metres, while visible light wavelengths are only a few hundred nanometres — one nanometre is 1/10 000th the thickness of a piece of paper!

Radio waves are not visible to us directly, but in 1867 their existence was predicted by James Clerk Maxwell. By the end of the 19th century, scientists had developed instruments that could transmit and detect electromagnetic waves at the radio end of the spectrum. A few decades later, it was discovered that these instruments could not only be used for communication, but could also be directed towards space — hidden parts of the Universe were suddenly revealed!

The first detection of radio waves from an astronomical object was in 1932, when Karl Jansky observed radiation coming from the Milky Way.

NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

Then came the phenomenal discovery of the cosmic microwave background [CMB] in 1964, worthy of a Nobel Prize in Physics.

CMB per ESA/Planck


Soon afterwards, Jocelyn Bell Burnell observed the first pulsar with an array of radio aerials in 1967, which led to another Nobel Prize. And this was only the beginning — a dazzling array of discoveries have been made since.

This panoramic view of the Chajnantor plateau shows some of the 66 antennas of the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO/B. Tafreshi (

But how do radio telescopes work?

In order to detect signals from astronomical objects, every radio telescope requires an antenna and at least one receiver. They come in a variety of shapes and sizes, reflecting the need to be able to detect a great breadth of radio waves across many wavelengths.

The antennas of most radio telescopes working at wavelengths shorter than 1 metre are paraboloidal dishes. The curved reflector concentrates incoming radio waves at a focal point. For shorter wavelengths, such as millimetre waves collected by ALMA and VLBI networks like the EHT and GMVA, the perfection of the dish’s surface is critical: any warp, bump, or dent in the parabola will scatter these tiny waves away from the focus, and valuable information is lost.

In addition to the main dish, most radio telescopes have secondary reflectors that send the concentrated waves to receivers. These receivers select, detect and amplify the radio signals of the desired frequencies. The receiver delivers these signals in an analogue format, which is converted into a digital signal and fed into a computer. Astronomers can then stitch these signals together to create a map of the sky measured by radio brightness.

Radio telescopes point at a radio source for hours in order to detect the faintest signals coming from the near and distant Universe. This technique is a similar to keeping the shutter of a camera open for a long exposure at night. After combining these signals with a computer, astronomers can analyse the radiation emitted by many astronomical phenomena — such as stars, galaxies, nebulae and supermassive black holes.

The view of the centre of our galaxy with a closer view of the object known as Sagittarius A*, the bright radio source that corresponds to the supermassive black hole. Credit: NRAO/AUI/NSF

Sag A* NASA Chandra X-Ray Observatory 23 July 2014, the supermassive black hole at the center of the Milky Way

Here’s the problem in radio astronomy: because radio wavelengths are so long, it is difficult to achieve a high resolution of the objects being observed. Even the shortest radio wavelengths observed by the largest single telescopes only result in an angular resolution slightly better than that of the unaided eye. The resolution (or degree of detail in the image) of a single telescope can be calculated by dividing the length of the radio wave by the diameter of the antenna. When this ratio is small, the angular resolution is large and therefore finer details can be observed. The larger the diameter of the telescope, the better the resolution, therefore radio telescopes tend to be much larger than telescopes suited for other, shorter wavelengths like visible light.

The longest wavelengths, on scales of metres, pose a particular challenge because it is hard to achieve good resolution from a single dish. The largest moveable dish is the Green Bank Telescope (100 metres across).

GBO radio telescope, Green Bank, West Virginia, USA

Dishes that don’t move can be much, much larger. The world’s biggest radio dish is the newly-constructed Five-hundred-meter Aperture Spherical Telescope (FAST) in China: a fixed dish supported by a natural basin in the landscape.

FAST radio telescope, now operating, located in the Dawodang depression in Pingtang county Guizhou Province, South China

FAST can observe radio waves up to 4.3 metres in wavelength. There are also other similar dishes, such as the historic 300-metre Arecibo Observatory, which was the largest telescope for five decades until FAST was completed in 2016.

NAIC/Arecibo Observatory, Puerto Rico, USA

But building antennas any larger than this is not feasible, so here we reach a limit when it comes to observing at longer and longer wavelengths. But what can be improved is the angular resolution, opening the door of investigation into the finest details of the low-energy Universe.

A Nobel Prize winning technique called interferometry opened this door: if the signals from many antennas spread over a large area are combined, then the antennas can operate together like a gigantic telescope — an array. Modern arrays usually bring the signals together at a central location in digital form using optical fibres, and then process them in a special-purpose supercomputer called a correlator.

Event Horizon Telescope Array

Event Horizon Telescope map

The locations of the radio dishes that will be part of the Event Horizon Telescope array. Image credit: Event Horizon Telescope sites, via University of Arizona at

Arizona Radio Observatory
Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

Atacama Pathfinder EXperiment (APEX)

CARMA Array no longer in service
Combined Array for Research in Millimeter-wave Astronomy (CARMA)

Atacama Submillimeter Telescope Experiment (ASTE)
Atacama Submillimeter Telescope Experiment (ASTE)

Caltech Submillimeter Observatory
Caltech Submillimeter Observatory (CSO)

IRAM NOEMA interferometer
Institut de Radioastronomie Millimetrique (IRAM) 30m

James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

Large Millimeter Telescope Alfonso Serrano
Large Millimeter Telescope Alfonso Serrano

CfA Submillimeter Array Hawaii SAO
Submillimeter Array Hawaii SAO


Future Array/Telescopes

Plateau de Bure interferometer
Plateau de Bure interferometer

South Pole Telescope SPTPOL
South Pole Telescope SPTPOL

One such array is the Atacama Large Millimeter/submillimeter Array on the Chajnantor plateau in the Atacama Desert. ALMA comprises 66 high-precision antennas up to 16 kilometres apart, working together as an interferometer. The resolution of an interferometer depends not on the diameter of individual antennas, but on the maximum separation between them. Moving the antennas further apart increases the resolution.

The signals from the antennas are brought together and processed by the ALMA correlator. The antennas work together in unison, giving ALMA a maximum resolution which is even better than that achieved at visible wavelengths by the NASA/ESA Hubble Space Telescope. This is because the maximum distance between the antennas can be very large, increasing the resolving power of the interferometer and allowing it to detect smaller details.

The ability to link antennas over baselines of many kilometres is crucial to obtain extremely good resolution and a high degree of detail in the images. This gives astronomers the possibility to go even further than arrays like ALMA; by combining the signals from radio telescopes all across the world, the distances between the antennas can be Earth-sized — and even larger, in the case of space-based antennas like Spektr-R.

The telescopes do not have to be physically connected; rather, the signals recorded at each telescope are later “played back” in the correlator. This technique, called very-long-baseline interferometry (VLBI), provides exquisite angular resolution and paves the way for phenomenal new discoveries — including the detailed observation of the supermassive black hole at the centre of our galaxy.

This is the fourth post of a blog series following the Event Horizon Telescope and the Global mm-VLBI Array projects. Next time, we’ll talk about how to build an Earth-sized radio telescope.

Global mm-VLBI Array

3. What’s so interesting about the event horizon?

We know that black holes are fascinating objects, capable of bending not only our minds but also reality itself. They squeeze matter into an extraordinarily miniscule space, resulting in an object with an immense gravitational pull. Around this object is a boundary beyond which nothing can escape, not even light: the event horizon. Besides attracting enormous quantities of matter, the event horizon is attracting a lot of attention from astronomers around the world. But why?

As we discovered in the previous post, black holes are impossible to observe directly. Photons aren’t emitted, and therefore nothing reaches the astronomer’s telescope (except, of course, small amounts of Hawking radiation). But scientists can learn a lot from the bright material surrounding black holes.

When matter comes under the gravitational spell of a black hole, material will either be sucked directly into it or will be pulled into a doomed orbit like water circling a drain. The gravitational pull near the event horizon is so strong that the matter around it reaches relativistic speeds (i.e. speeds comparable to the speed of light). The friction between the material heats it to incredibly high temperatures, turning it into glowing plasma. Close to the event horizon photons are pulled into nearly circular orbits, and this form a bright photon ring which outlines the black “shadow” of inside the event horizon itself.

Simulated image of an accreting black hole. The event horizon is in the middle of the image, and the shadow can be seen with a rotating accretion disk surrounding it. Credit: Bronzwaer/Davelaar/Moscibrodzka/Falcke/Radboud University

Einstein’s theory of general relativity predicts the existence of event horizons around black holes. But until now, the resolution of our telescopes has not been high enough to “see” a black hole. Despite the fact that the event horizon can be millions of kilometres in diameter, black holes are elusive. They are very far away and often hidden behind significant amounts of interstellar gas and dust. At 26 000 light-years from Earth, our galaxy’s supermassive black hole — called Sagittarius A* — is just a tiny pinprick on the sky.

By linking up different telescopes across the globe, the Event Horizon Telescope (EHT) and the Global mm-VLBI Array (GMVA) can achieve the resolution necessary to perceive the pinprick of Sagittarius A*. Without doubt, these observations are incredibly exciting. They will allow for the study of black holes in more detail — as well as acting as a test for Einstein’s theory of General Relativity.

“Einstein’s wonderful general relativity has been around for about a hundred years now and is very unintuitive, but despite that, it has managed to overcome all tests so far,” explains Ciriaco Goddi, astronomer from the EHT. “However, these tests have not been done in such strong gravitational fields.”

A pressing issue in physics is that the theories of general relativity and quantum mechanics seem to be fundamentally incompatible. To get to the bottom of this issue, physicists need to study the places where these theories overlap or break down. However, the conventional view is that this will not be observed at the event horizon of a supermassive black hole: quantum effects are expected to be important only near the horizon of lighter (about 10 microgram) black holes — of which we currently have no evidence for their existence. Yet some theorists argue that there will be deviations from classical general relativity close to the event horizon even for supermassive black holes, and these are potentially observable with the EHT.

“If there is any deviation from Einstein’s predictions near the black hole, where gravitation is at its strongest, we would need a new theory of gravity,” Goddi says, “and that means that we would need to describe space and time in different terms.”

General relativity predicts that the “shadow” of a black hole is circular, but other theories predict the shadow could be “squashed” along either the vertical axis (prolate) or the horizontal axis (oblate). Studying the shadow can therefore test general relativity as well as alternate theories of gravity. Plus, since the diameter of the black hole’s shadow is proportional to its mass, observing a black hole’s shadow may allow astronomers to directly estimate its mass.

This infographic shows a simulation of the outflow (bright red) from a black hole and the accretion disk around it, with simulated images of the three potential shapes of the event horizon’s shadow. Credit: ESO/N. Bartmann/A. Broderick/C.K. Chan/D. Psaltis/F. Ozel

ALMA astronomer Violette Impellizzeri adds: We think that there is a supermassive black hole at the centre of every galaxy. But the inner workings of these black holes remain a mystery. However, we need to ask ourselves the question of why there is a supermassive black hole at the centre of every galaxy. And it’s become more and more clear that black holes play a fundamental role in the formation of galaxies, and how they evolved. So, the links between the black holes, the galaxies, and the Universe are vital to understand.”

The VLBI observations with the EHT and GMVA will make phenomenal new discoveries, addressing the current and pressing problems of gravitational theory.

This is the third post of a blog series following the EHT and GMVA projects. Next time, we’ll explore how radio telescopes work.

2. What is a black hole?


Since no light can escape from a black hole, we can’t see them directly. But their huge gravitational influence gives away their presence. Black holes are often orbited by stars, gas and other material in tight paths that become more crowded and frantic as they’re dragged closer to the event horizon. This creates a superheated accretion disc around the black hole, which emits vast amounts of radiation of different wavelengths.

By observing this radiation from the activity around black holes, astronomers have determined that there are two main types: stellar mass and supermassive.

A stellar mass black hole is the corpse of a star more than about 30 times as massive as our Sun. At the end of its life, such stars violently collapse and don’t stopped collapsing until all of their constituent matter has condensed down into an unimaginably tiny space. It’s easiest to discover stellar mass black holes that are part of an X-ray binary system, where the black hole is guzzling down material from its companion star.

Artist’s impression of the formation of a stellar black hole in a binary system. Credit: ESO/L. Calçada/M.Kornmesser

The second type is called a supermassive black hole. These gargantuan black holes are up to billions of times more massive than an average star, and how they formed is much less clear and is a matter of ongoing study. One theory proposes they formed from enormous clouds of matter that collapsed when galaxies first formed; another theory suggests that colliding stellar mass black holes can merge into one enormous object.

Today, these supermassive monsters reside at the centres of almost every galaxy — including our own Milky Way. They exert tremendous influence on their home galaxies, especially when they gorge on gas and stars.

Artist’s impression of a gas cloud after a close approach to the black hole at the centre of the Milky Way. The star orbiting the black hole are shown, along with blue lines that mark their fast, tight orbits. Credit: ESO/MPE/Marc Schartmann

26 000 light-years away from Earth, Sagittarius A* (Sgr A* for short) is the supermassive black hole in the hot, violent centre of the Milky Way. It’s over 4 million times more massive than our Sun, over 20 million kilometres across, and is spinning at a large fraction of the speed of light. It’s shrouded from optical telescopes by dense clouds of dust and gas, so observatories that can observe different wavelengths — either longer (such as ALMA) or shorter (X-ray telescopes) — are essential to study its properties.

Soon, through the combined power of ALMA and other millimetre-wavelength telescopes across the globe, we may become much better acquainted with the monstrous heart of our galaxy. The Global mm-VLBI Array is currently investigating the process of how gas, dust and other material accrete onto supermassive black holes, as well as the formation of the extremely fast gas jets that flow from them. The Event Horizon Telescope, on the other hand, is working towards a different goal: imaging the shadow of the event horizon, the point of no return.

This is the second post of a blog series following the EHT and GMVA projects. Stay tuned to find out more about why the event horizon of a black hole is so interesting!

1. What are the Event Horizon Telescope and the Global mm-VLBI Array?

At the centre of our galaxy lurks a cosmic monster: a supermassive black hole called Sagittarius A* with a mass about four million times that of the Sun. Its gravity is so intense that not even light can escape its pull, but if it wasn’t for its strong gravitational influence on the stars and gas around it, we would have no idea that it was there! Now, an ambitious new endeavour is underway to take a never-seen-before image, of the event horizon of the black hole itself.

Two international collaborations of radio telescopes have linked up to create Earth-sized virtual telescopes: the Event Horizon Telescope (EHT) [above]and the Global mm-VLBI Array (GMVA) [above], working at different wavelengths. The impressive line-up of telescopes, which stretch across the globe from the South Pole to Hawaii to Europe, will work together to target the supermassive black hole at the heart of the Milky Way.

To do this, astronomers will exploit a technique known as Very-long-baseline Interferometry (VLBI), where telescopes thousands of kilometres apart can link together and act as one. This cooperative technique can achieve a far higher resolution than any single facility could obtain on its own — a resolution 2000 times that of the NASA/ESA Hubble Space Telescope! This super-high resolution is crucial for detecting the black hole, which — despite being about 20 times bigger than the Sun — lies a long way away, over 26 000 light-years from Earth.

This infographic details the locations of the participating telescopes of the Event Horizon Telescope and the Global mm-VLBI Array. Credit: ESO/O. Furtak

ALMA’s solitude: This panoramic view of the Chajnantor Plateau shows the site of the Atacama Large Millimeter/submillimeter Array (ALMA), a place of solitude 5000 metres above sea level in the Chilean Andes. Credit: ESO/B. Tafreshi (

The first groundbreaking observations will be made in April 2017: observations at 3 millimetre wavelengths will be made with the GMVA from 1–4 April 2017, and with the EHT at 1.3 millimetre wavelengths from 5–14 April 2017. The GMVA will investigate the properties of the accretion and outflow around the Galactic Centre, while the EHT will attempt to image, for the very first time, the shadow of the black hole’s event horizon.

There is a long, hard road ahead to process the massive amounts of data that will be acquired during the observation periods, and results are expected to become available towards the end of 2017.

The outcome of these observations is eagerly awaited by the astronomy community worldwide, as their scientific potential is incredibly exciting and the collaboration are pursuing some awesome goals. These could include testing Einstein’s theory of general relativity, which predicts a roughly circular “shadow” around the black hole. Other goals include learning about how material accretes around black holes, as well as the formation of extremely fast jets of gas that blast out from them.

Simulated images of the shadow of a black hole: General relativity predicts that the shadow should be circular (middle), but a black hole could potentially also have a prolate (left) or oblate (right) shadow. Future EHT images will test this prediction. Credit: D. Psaltis and A. Broderick.

See the full article here .

Please help promote STEM in your local schools.

Stem Education Coalition
Visit ESO in Social Media-




ESO Bloc Icon

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

ESO LaSilla
ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO Vista Telescope
ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

ESO VLT Survey telescope
VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

ALMA Array
ALMA on the Chajnantor plateau at 5,000 metres

ESO/E-ELT to be built at Cerro Armazones at 3,060 m

APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert