From U Wisconsin IceCube: “IceCube sets new best limits for dark matter searches in neutrino detectors”

U Wisconsin IceCube South Pole Neutrino Observatory

24 May 2017
Sílvia Bravo

Studies aimed at understanding the nature and origin of dark matter include experiments in astronomy, astrophysics and particle physics. Astronomical observations point to the existence of dark matter in large amounts and in many cosmic environments, including the Milky Way. However, at the same time, the international quest to detect a dark matter interaction has so far been unsuccessful.

IceCube has proven to be a champion detector for indirect searches of dark matter using neutrinos. As the amount of data grows and a better understanding of the detector allows making evermore precise measurements, the IceCube Collaboration continues exploring a vast range of dark matter energies and decay channels. In the most recent study, the collaboration sets the best limits on a neutrino signal from dark matter particles with masses between 10 and 100 GeV. These results have recently been submitted to the European Physical Journal C.

Comparison of upper limits on , i.e., the velocity averaged product of the dark matter self-annihilation cross section and the relative velocity of the dark matter particles, versus WIMP mass, for dark matter self-annihilating through taus to neutrinos. The ‘natural scale’ refers to the value that is needed for WIMPs to be a thermal relic. Credit: IceCube Collaboration.

Searches for dark matter usually focus on a generic candidate, called a weakly interacting massive particle, or WIMP. Physicists expect WIMPs to interact with other matter particles or to self-annihilate, producing a cascade of known particles, which for many channels and energies include neutrinos that can be detected on Earth. If this is the case, a neutrino detector on Earth is expected to detect an excess of neutrinos related to the distribution of dark matter in our galaxy. A similar signal is expected for photons.

“The enormous size of IceCube allows the rare detection of high-energy neutrinos, but it is also essential for the detection of neutrinos at lower energies as it serves to identify incoming muons produced in cosmic ray air showers, which is a major challenge in searching for a signal from the Southern Hemisphere,” explains Morten Medici, a PhD student at the Niels Bohr Institute in Denmark and corresponding author of this study.

See the full article here .

Please help promote STEM in your local schools.


Stem Education Coalition

ICECUBE neutrino detector
IceCube is a particle detector at the South Pole that records the interactions of a nearly massless sub-atomic particle called the neutrino. IceCube searches for neutrinos from the most violent astrophysical sources: events like exploding stars, gamma ray bursts, and cataclysmic phenomena involving black holes and neutron stars. The IceCube telescope is a powerful tool to search for dark matter, and could reveal the new physical processes associated with the enigmatic origin of the highest energy particles in nature. In addition, exploring the background of neutrinos produced in the atmosphere, IceCube studies the neutrinos themselves; their energies far exceed those produced by accelerator beams. IceCube is the world’s largest neutrino detector, encompassing a cubic kilometer of ice.