From Chandra: “Messier 81: Black Holes Have Simple Feeding Habits” 2008 but new to me

NASA Chandra Banner

NASA Chandra Telescope

NASA Chandra

1
Credit: X-ray: NASA/CXC/Wisconsin/D.Pooley & CfA/A.Zezas; Optical: NASA/ESA/CfA/A.Zezas; UV: NASA/JPL-Caltech/CfA/J.Huchra et al.; IR: NASA/JPL-Caltech/CfA
Release Date June 18, 2008

This composite NASA image of the spiral galaxy M81, located about 12 million light years away, includes X-ray data from the Chandra X-ray Observatory (blue), optical data from the Hubble Space Telescope (green), infrared data from the Spitzer Space Telescope (pink) and ultraviolet data from GALEX (purple).

NASA/ESA Hubble Telescope

NASA/Spitzer Telescope

NASA/Galex telescope

The inset shows a close-up of the Chandra image. At the center of M81 is a supermassive black hole that is about 70 million times more massive than the Sun.

A new study using data from Chandra and ground-based telescopes, combined with detailed theoretical models, shows that the supermassive black hole in Messier 81 feeds just like stellar mass black holes, with masses of only about ten times that of the Sun. This discovery supports the implication of Einstein’s relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes.

In addition to Chandra, three radio arrays (the Giant Meterwave Radio Telescope, the Very Large Array and the Very Long Baseline Array), two millimeter telescopes (the Plateau de Bure Interferometer and the Submillimeter Array), and Lick Observatory in the optical were used to monitor M81.

Giant Metrewave Radio Telescope

NRAO/VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

IRAM NOEMA interferometer, Located in the French Alpes on the wide and isolated Plateau de Bure at an elevation of 2550 meters

CfA Submillimeter Array Mauna Kea, Hawaii, USA

The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California

These observations were made simultaneously to ensure that brightness variations because of changes in feeding rates did not confuse the results. Chandra is the only X-ray satellite able to isolate the faint X-rays of the black hole from the emission of the rest of the galaxy.

The supermassive black hole in M81 generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. Therefore, the model that Markoff and her colleagues used to study the black holes includes a faint disk of material spinning around the black hole. This structure would mainly produce X-rays and optical light. A region of hot gas around the black hole would be seen largely in ultraviolet and X-ray light. A large contribution to both the radio and X-ray light comes from jets generated by the black hole. Multiwavelength data is needed to disentangle these overlapping sources of light.

S. Markoff et al, 2008, ApJ, in press

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

Advertisements