From Gruber Foundation via UCSC: “Congratulations Sandy Faber!!!”

UC Santa Cruz

UC Santa Cruz

1

Gruber Foundation

2017 Gruber Cosmology Prize Press Release

Sandra Faber Receives $500,000 Gruber Cosmology Prize for Career Achievements

2
Dr. Sandra Faber, UCSC

The 2017 Gruber Foundation Cosmology Prize recognizes Sandra M. Faber for a body of work that has helped establish many of the foundational principles underlying the modern understanding of the universe on the largest scales.

The citation praises Faber for “her groundbreaking studies of the structure, dynamics, and evolution of galaxies.” That work has led to the widespread acceptance of the need to study dark matter, to an appreciation of the inextricable relationship between the presence of dark matter and the formation of galaxies, and to the recognition that black holes reside at the heart of most large galaxies. She has also made significant contributions to the innovations in telescope technology that have revolutionized modern astronomy. Through these myriad achievements, the Gruber citation adds, Faber has “aided and inspired the work of astronomers and cosmologists worldwide.”

Faber will receive the $500,000 award as well as a gold medal at a ceremony this fall.

Less than a hundred years ago, astronomers were still debating whether our Milky Way Galaxy was the entirety of the universe or if other galaxies existed beyond our own. Today astronomers estimate the number of galaxies within the visible universe at somewhere between 200 billion and 2 trillion. For more than four decades Faber—now Professor Emerita at the University of California, Santa Cruz, and Astronomer Emerita of the University of California Observatories—has served as a pivotal figure in leading and guiding the exploration of this unimaginably vast virgin scientific territory.

A partial summary of her achievements includes:

• In 1976 Faber and Robert Earl Jackson discovered a relation between the orbital speeds of stars in elliptical galaxies and the galaxy’s mass. Other such laws have emerged since then, but the Faber-Jackson relation was the first.

• In 1979 Faber and John S. Gallagher published a paper that provided a comprehensive review of the evidence for the existence of dark matter. Among astronomers this paper is regarded as the turning point in the debate about whether 80 percent of the mass in the universe is “missing”—mysterious, invisible, and impervious to direct detection.

• Faber’s discovery of large amounts of dark matter (using indirect methods of detection) in a certain exotic species of galaxy led her to conclude, in a 1983 paper with Douglas Lin, that dark matter could not be neutrinos, a subatomic particle that travels close to the speed of light (“hot,” in cosmological parlance), but might be another species of subatomic particle, not yet known, that travels at a much slower rate (“cold”).

• The following year Faber was part of a four-member collaboration that presented a comprehensive theory of how cold dark matter could explain the structure and behavior of galaxies and superclusters of galaxies that we actually observe in the universe. This theory remains the paradigm underpinning all modern models of galaxy formation.

• In 1985 Faber emerged as the leading science advocate for the construction of the 10-meter Keck telescope in Hawaii (the most powerful on the planet when it went online in 1993) and, with Harland Epps, developed the optical design. She later served as the co-chair of the Keck Science Steering Committee and went on to lead construction of the DEIMOS spectrograph on Keck, one of the largest and most innovative astronomical instruments in the world.

• During that same period Faber was a member of the collaboration developing the Wide-Field Camera for the Hubble Space Telescope. (She may have been the only astronomer to play a major role on both Keck and Hubble.)

NASA’ESA Hubble Telescope

Keck Observatory, Mauna Kea, Hawaii, USA

After the launch of the Hubble telescope a few years later, she and postdoc Jon Holtzman diagnosed the spherical aberration that was compromising the telescope’s image quality. Faber then led the replanning of the entire suite of early observations.

• In 1988 Faber was the Principal Investigator among the so-called Seven Samurai, a collaboration that discovered irregularities in the rate of the universe’s expansion that apparently depend on the distribution of matter, and therefore the distribution of gravitational effects, on the largest scales.

• From 1985 to 2002 Faber served as the Principal Investigator for a collaboration that came to call themselves the “Nukers”—because they were studying the nuclei of galaxies.

Among the discoveries that the Nuker collaboration made under Faber’s leadership were that the center of every large galaxy harbors a massive black hole and that the mass of that central black hole closely correlates to the orbital speed of stars within the galaxy as a whole.

• Since 2010 Faber has served as co-Principal Investigator, with Henry Ferguson, on the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Survey) collaboration, the largest project in the history of the Hubble Space Telescope.

3

Over the course of more than 900 Earth orbits, the team collected data on the most distant, and therefore (because the light from the galaxies takes billions of years to reach us) among the youngest, galaxies. By comparing those data with the already existing voluminous data about galaxies near to us, astronomers can trace the evolution of galaxies throughout cosmic time.

As a body of work, these advances and discoveries, both observational and technological, have helped define how scientists think about and investigate galaxies and superclusters of galaxies, the largest structures in the universe.

For Faber, though, they have also helped define how civilization can conceive of its place in the cosmos. In recent years she has become a prolific public speaker, delivering her lecture “Cosmic Knowledge and the Future of the Human Race” around the world. That title speaks volumes about her own philosophy.

“Astronomical knowledge,” she says, “is probably the most important single discipline that you need to know in order to be an informed citizen of earth.” The reason, she says, is that developments in astronomy over the past few decades have shown us that we have been given “the precious gift of cosmic time”—the concept that the universe exists on a scale of billions of years and that planet Earth will be a safe haven for us for hundreds of millions of years into the future. “Astronomical knowledge tells us how we got here and furthermore, having understood that, we can extrapolate more confidently for the future.”

Few if any astronomers have done more to make that understanding possible than Sandra Faber.

n addition to the cash award, the recipient will receive a gold laureate pin and a citation that reads:

The Gruber Foundation proudly presents the 2017 Cosmology Prize to Sandra Faber for her groundbreaking studies of the structure, dynamics, and evolution of galaxies. Her research ranges from detailed studies of the stellar populations, masses, dark matter content, and supermassive black holes in nearby galaxies, to surveys of distant galaxies over cosmic time. The results of these investigations have aided and inspired the work of astronomers and cosmologists worldwide.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

UCO Lick Shane Telescope
UCO Lick Shane Telescope interior
Shane Telescope at UCO Lick Observatory, UCSC

Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

UC Santa Cruz campus
The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

UCSC is the home base for the Lick Observatory.

Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

Search for extraterrestrial intelligence expands at Lick Observatory
New instrument scans the sky for pulses of infrared light
March 23, 2015
By Hilary Lebow
1
The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

“Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

5
UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

“The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

“We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

“This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

“Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

UCSC is the home base for the Lick Observatory.

Advertisements