From “Flash Physics: Matter-wave tractor beams”


May 5, 2017
Sarah Tesh

Flash Physics is our daily pick of the latest need-to-know developments from the global physics community selected by Physics World’s team of editors and reporters

Tractor beams could be made from matter waves

Grabbing hold: a matter-wave tractor beam

It should be possible to create a matter-wave tractor beam that grabs hold of an object by firing particles at it – according to calculations by an international team of physicists. Tractor beams work by firing cone-like “Bessel beams” of light or sound at an object. Under the right conditions, the light or sound waves will bounce off the object in such a way that the object experiences a force in the opposite direction to that of the beam. If this force is greater than the outward pressure of the beam, the object will be pulled inwards. Now, Andrey Novitsky and colleagues at Belarusian State University, ITMO University in St Petersburg and the Technical University of Denmark have done calculations that show that beams of particles can also function as tractor beams. Quantum mechanics dictates that these particles also behave as waves and the team found that cone-like beams of matter waves should also be able to grab hold of objects. There is, however, an important difference regarding the nature of the interaction between the particles and the object. Novitsky and colleagues found that if the scattering is defined by the Coulomb interaction between charged particles, then it is not possible to create a matter-wave tractor beam. However, tractor beams are possible if the scattering is defined by a Yukawa potential, which is used to describe interactions between some subatomic particles. The calculations are described in Physical Review Letters.

See the full article here .

Please help promote STEM in your local schools.


Stem Education Coalition

PhysicsWorld is a publication of the Institute of Physics. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.
IOP Institute of Physics