From ESO: “VISTA Peeks Through the Small Magellanic Cloud’s Dusty Veil”

ESO 50 Large

European Southern Observatory

3 May 2017
Maria-Rosa Cioni
Leibniz-Institut für Astrophysik Potsdam (AIP)
Potsdam, Germany
Tel: +49 331 7499 651
Email: mcioni@aip.de

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

1
The Small Magellanic Cloud galaxy is a striking feature of the southern sky even to the unaided eye. But visible-light telescopes cannot get a really clear view of what is in the galaxy because of obscuring clouds of interstellar dust. VISTA’s infrared capabilities have now allowed astronomers to see the myriad of stars in this neighbouring galaxy much more clearly than ever before. The result is this record-breaking image — the biggest infrared image ever taken of the Small Magellanic Cloud — with the whole frame filled with millions of stars.

The Small Magellanic Cloud (SMC) is a dwarf galaxy, the more petite twin of the Large Magellanic Cloud (LMC).

Large Magellanic Cloud. Adrian Pingstone December 2003

They are two of our closest galaxy neighbours in space — the SMC lies about 200 000 light-years away, just a twelfth of the distance to the more famous Andromeda Galaxy.

Andromeda Galaxy Adam Evans

Both are also rather peculiarly shaped, as a result of interactions with one another and with the Milky Way itself.

Their relative proximity to Earth makes the Magellanic Clouds ideal candidates for studying how stars form and evolve. However, while the distribution and history of star formation in these dwarf galaxies were known to be complex, one of the biggest obstacles to obtaining clear observations of star formation in galaxies is interstellar dust. Enormous clouds of these tiny grains scatter and absorb some of the radiation emitted from the stars — especially visible light — limiting what can be seen by telescopes here on Earth. This is known as dust extinction.

The SMC is full of dust, and the visible light emitted by its stars suffers significant extinction. Fortunately, not all electromagnetic radiation is equally affected by dust. Infrared radiation passes through interstellar dust much more easily than visible light, so by looking at the infrared light from a galaxy we can learn about the new stars forming within the clouds of dust and gas.

VISTA, the Visible and Infrared Survey Telescope, was designed to image infrared radiation. The VISTA Survey of the Magellanic Clouds (VMC) is focused on mapping the star formation history of the SMC and LMC, as well as mapping their three-dimensional structures. Millions of SMC stars have been imaged in the infrared thanks to the VMC, providing an unparalleled view almost unaffected by dust extinction.

The whole frame of this massive image is filled with stars belonging to the Small Magellanic Cloud. It also includes thousands of background galaxies and several bright star clusters, including 47 Tucanae at the right of the picture, which lies much closer to the Earth than the SMC. The zoomable image will show you the SMC as you have never seen it before!

The wealth of new information in this 1.6 gigapixel image (43 223 x 38 236 pixels) has been analysed by an international team led by Stefano Rubele of the University of Padova. They have used cutting-edge stellar models to yield some surprising results.

The VMC has revealed that most of the stars within the SMC formed far more recently than those in larger neighbouring galaxies. This early result from the survey is just a taster of the new discoveries still to come, as the survey continues to fill in blind spots in our maps of the Magellanic Clouds.
More information

This research was presented in the paper The VMC survey – XIV. First results on the look-back time star formation rate tomography of the Small Magellanic Cloud, in the journal Monthly Notices of the Royal Astronomical Society.


This video takes a quick look at a remarkable new image from ESO’s VISTA survey telescope at the Paranal Observatory in Chile. The huge picture shows one of our neighbouring galaxies, the Small Magellanic Cloud, in remarkable detail and in infrared light.

The video is available in 4K UHD.

The ESOcast Light is a series of short videos bringing you the wonders of the Universe in bite-sized pieces. The ESOcast Light episodes will not be replacing the standard, longer ESOcasts, but complement them with current astronomy news and images in ESO press releases.
Credit: ESO

Editing: Herbert Zodet.
Web and technical support: Mathias André and Raquel Yumi Shida.
Written by: Hannah Dalgleish, Lauren Fuge and Richard Hook.
Music: tonelabs (tonelabs.com).
Footage and photos: VISTA VMC, N. Risinger (skysurvey.org), ESA/Hubble and Digitized Sky Survey 2. Acknowledgements: Davide De Martin.
Directed by: Herbert Zodet.
Executive producer: Lars Lindberg Christensen.


The video sequence takes the viewer from a wide view of the southern skies deep into a small nearby galaxy, the Small Magellanic Cloud. The final close-up infrared views are from a very detailed huge image of the galaxy taken using ESO’s VISTA infrared survey telescope at the Paranal Observatory in Chile. Millions of stars and many star clusters and much more distant galaxies are visible.
Credit: ESO/VISTA VMC/N. Risinger (skysurvey.org). Music: Astral electronic.


This view compares a huge new infrared image of the Small Magellanic Cloud from ESO’s VISTA telescope to a more traditional view in visible light. By observing at longer infrared wavelengths VISTA can penetrate the dust clouds of this small neighbouring galaxy and reveal the stars much more clearly. Credit: ESO/VISTA VMC/Digitized Sky Survey 2. Music: Astral electronic.

See the full article here .

Please help promote STEM in your local schools.
STEM Icon

Stem Education Coalition
Visit ESO in Social Media-

Facebook

Twitter

YouTube

ESO Bloc Icon

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

ESO LaSilla
ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

ESO VLT
VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO Vista Telescope
ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO NTT
ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

ESO VLT Survey telescope
VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

ALMA Array
ALMA on the Chajnantor plateau at 5,000 metres

ESO E-ELT
ESO/E-ELT to be built at Cerro Armazones at 3,060 m

ESO APEX
APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert

Advertisements