From ESA: “ESA boosting its Argentine link with deep space”

ESA Space For Europe Banner

European Space Agency

25 April 2017
No writer credit

Thanks to some high-tech improvements, ESA’s radio dish in Argentina will be ready to receive the rising torrent of scientific data beamed back by future missions exploring deep in our Solar System.

1
ESA Malargüe tracking station
Released 21/08/2015
Copyright ESA/D. Pazos – CC BY-SA IGO 3.0
Malargüe station supports many of ESA’s most important exploration missions, including Rosetta, Mars Express, ExoMars, LISA Pathfinder and Gaia.

ESA/Rosetta spacecraft

ESA/Mars Express Orbiter

ESA/ExoMars

ESA/LISA Pathfinder

ESA/GAIA satellite

Since 2012, ESA’s deep-space tracking station at Malargüe, about 1200 km west of Buenos Aires, Argentina, has provided critical links to some of Europe’s most important missions, including ExoMars, Mars Express, Gaia and Rosetta.

The data-gathering capabilities of upcoming exploration missions is steadily increasing, however, and this means a 10-fold growth, each decade, in the amount of science data that must be downlinked from Mercury, the surface of Mars or the enigmatic moons circling Jupiter.

To cater for this need, ESA is investing in a series of significant upgrades for its Malargüe station, underscoring the Agency’s long and productive partnership with Argentina and that country’s strong involvement in space science.

2
ESA/Euclid
Released 25/04/2017
Copyright ESA/C. Carreau, CC BY-SA 3.0 IGO
Euclid is an ESA mission to map the geometry of the dark Universe. Euclid will investigate the distance-redshift relationship and the evolution of cosmic structures. It achieves this by measuring shapes and redshifts of galaxies and clusters of galaxies out to redshifts ~2, or equivalently to a look-back time of 10 billion years. It will therefore cover the entire period over which dark energy played a significant role in accelerating the expansion. The Euclid spacecraft will have a launch mass of around 2100 kg. It will be about 4.5 metres tall and 3.1 metres in ‘diameter’ (with appendages stowed). The nominal mission lifetime is six years.

Boosting bitrates from deep space

The upgrades will be spread over two years and include a new main signal-processing system and the addition of a 26 GHz downlink that will enable high-speed data receipt from space.

“This means our station at Malargüe will be able to download data from ESA’s future Euclid mission, for example, at 150 Mbit/s, 15 times faster than today,” says Michel Dugast, ESA’s station engineer and project manager for the upgrade.

“It will also support cornerstone ESA missions like ExoMars 2020, BepiColombo and Juice, as well as partner missions from Russia, the US and Japan, among others.”

The 18 months of work, valued at about €4 million, will start in May.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

ESA50 Logo large

Advertisements