From ESO: “Taking the First Picture of a Black Hole”

ESO 50 Large

European Southern Observatory

30.3.2017

1. What are the Event Horizon Telescope and the Global mm-VLBI Array?

At the centre of our galaxy lurks a cosmic monster: a supermassive black hole called Sagittarius A* with a mass about four million times that of the Sun.

Sag A* NASA Chandra X-Ray Observatory 23 July 2014, the supermassive black hole at the center of the Milky Way

Its gravity is so intense that not even light can escape its pull, but if it wasn’t for its strong gravitational influence on the stars and gas around it, we would have no idea that it was there! Now, an ambitious new endeavour is underway to take a never-seen-before image, of the event horizon of the black hole itself.

Two international collaborations of radio telescopes have linked up to create Earth-sized virtual telescopes: the Event Horizon Telescope (EHT) and the Global mm-VLBI Array (GMVA), working at different wavelengths.

1
This infographic details the locations of the participating telescopes of the Event Horizon Telescope and the Global mm-VLBI Array. Credit: ESO/O. Furtak

Global mm-VLBI Array

Event Horizon Telescope Array

Event Horizon Telescope map

The locations of the radio dishes that will be part of the Event Horizon Telescope array. Image credit: Event Horizon Telescope sites, via University of Arizona at https://www.as.arizona.edu/event-horizon-telescope.

Arizona Radio Observatory
Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

ESO/APEX
Atacama Pathfinder EXperiment (APEX)

CARMA Array no longer in service
Combined Array for Research in Millimeter-wave Astronomy (CARMA)

Atacama Submillimeter Telescope Experiment (ASTE)
Atacama Submillimeter Telescope Experiment (ASTE)

Caltech Submillimeter Observatory
Caltech Submillimeter Observatory (CSO)

IRAM NOEMA interferometer
Institut de Radioastronomie Millimetrique (IRAM) 30m

James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

Large Millimeter Telescope Alfonso Serrano
Large Millimeter Telescope Alfonso Serrano

CfA Submillimeter Array Hawaii SAO
Submillimeter Array Hawaii SAO

Future Array/Telescopes

ESO/NRAO/NAOJ ALMA Array
ESO/NRAO/NAOJ ALMA Array, Chile

Plateau de Bure interferometer
Plateau de Bure interferometer

South Pole Telescope SPTPOL
South Pole Telescope SPTPOL

The impressive line-up of telescopes, which stretch across the globe from the South Pole to Hawaii to Europe, will work together to target the supermassive black hole at the heart of the Milky Way.

To do this, astronomers will exploit a technique known as Very-long-baseline Interferometry (VLBI), where telescopes thousands of kilometres apart can link together and act as one.

European VLBI

This cooperative technique can achieve a far higher resolution than any single facility could obtain on its own — a resolution 2000 times that of the NASA/ESA Hubble Space Telescope! This super-high resolution is crucial for detecting the black hole, which — despite being about 20 times bigger than the Sun — lies a long way away, over 26 000 light-years from Earth.

The plan to image a black hole has been in the works for years, but it’s only recently that technology has brought the ambitious endeavour within reach. Plus, a radio telescope heavyweight has just joined the team: the Atacama Large Millimeter/submillimeter Array (ALMA).

Located high up on the Chajnantor plateau in Chile’s Atacama Desert, ALMA’s 66 antennas and exquisite receivers make it the largest and most sensitive component of the EHT/GMVA collaboration, increasing the overall sensitivity by a factor of 10. Despite being a state-of-the-art facility, ALMA has undergone several upgrades to take part in the collaboration. Specialist equipment has been installed, including new hard drives that are necessary to store the sheer amount of data produced by the observations, as well as an extremely accurate atomic clock, which is critical to link ALMA to the entire VLBI network.

The first groundbreaking observations will be made in April 2017: observations at 3 millimetre wavelengths will be made with the GMVA from 1–4 April 2017, and with the EHT at 1.3 millimetre wavelengths from 5–14 April 2017. The GMVA will investigate the properties of the accretion and outflow around the Galactic Centre, while the EHT will attempt to image, for the very first time, the shadow of the black hole’s event horizon.

There is a long, hard road ahead to process the massive amounts of data that will be acquired during the observation periods, and results are expected to become available towards the end of 2017.

The outcome of these observations is eagerly awaited by the astronomy community worldwide, as their scientific potential is incredibly exciting and the collaboration are pursuing some awesome goals. These could include testing Einstein’s theory of general relativity, which predicts a roughly circular “shadow” around the black hole. Other goals include learning about how material accretes around black holes, as well as the formation of extremely fast jets of gas that blast out from them.

3
Simulated images of the shadow of a black hole: General relativity predicts that the shadow should be circular (middle), but a black hole could potentially also have a prolate (left) or oblate (right) shadow. Future EHT images will test this prediction. Credit: D. Psaltis and A. Broderick.

This is the first post of a blog series that will take you along for the astronomical ride, giving insight into how cutting-edge research is done and what risks are involved.

In the following posts, we’ll explore questions such as: What makes black holes so interesting? How do radio telescopes see the Universe? And what do we really know about the supermassive monster lurking at the centre of the Milky Way?

11.4.2017

2. What is a black hole?

Right now, astronomers are attempting to take the first image of the event horizon of the supermassive black hole at the centre of the Milky Way — but what exactly are black holes?

Black holes are some of the most bizarre and fascinating objects in the Universe. Essentially, they’re reality-bending concentrations of matter squeezed into a very tiny space, creating an object with an immense gravitational pull. Around a black hole is a boundary called an event horizon — the surface beyond which nothing can escape the black hole’s clutches, not even light.

Take a tour of the anatomy of a black hole with our handy infographic:

4
Credit: ESO, ESA/Hubble, M. Kornmesser/N. Bartmann

Since no light can escape from a black hole, we can’t see them directly. But their huge gravitational influence gives away their presence. Black holes are often orbited by stars, gas and other material in tight paths that become more crowded and frantic as they’re dragged closer to the event horizon. This creates a superheated accretion disc around the black hole, which emits vast amounts of radiation of different wavelengths.

By observing this radiation from the activity around black holes, astronomers have determined that there are two main types: stellar mass and supermassive.

A stellar mass black hole is the corpse of a star more than about 30 times as massive as our Sun. At the end of its life, such stars violently collapse and don’t stopped collapsing until all of their constituent matter has condensed down into an unimaginably tiny space. It’s easiest to discover stellar mass black holes that are part of an X-ray binary system, where the black hole is guzzling down material from its companion star.

5
Artist’s impression of the formation of a stellar black hole in a binary system. Credit: ESO/L. Calçada/M.Kornmesser

The second type is called a supermassive black hole. These gargantuan black holes are up to billions of times more massive than an average star, and how they formed is much less clear and is a matter of ongoing study. One theory proposes they formed from enormous clouds of matter that collapsed when galaxies first formed; another theory suggests that colliding stellar mass black holes can merge into one enormous object.

Today, these supermassive monsters reside at the centres of almost every galaxy — including our own Milky Way. They exert tremendous influence on their home galaxies, especially when they gorge on gas and stars.

6
Artist’s impression of a gas cloud after a close approach to the black hole at the centre of the Milky Way. The star orbiting the black hole are shown, along with blue lines that mark their fast, tight orbits. Credit: ESO/MPE/Marc Schartmann

26 000 light-years away from Earth, Sagittarius A* (Sgr A* for short) is the supermassive black hole in the hot, violent centre of the Milky Way. It’s over 4 million times more massive than our Sun, over 20 million kilometres across, and is spinning at a large fraction of the speed of light. It’s shrouded from optical telescopes by dense clouds of dust and gas, so observatories that can observe different wavelengths — either longer (such as ALMA) or shorter (X-ray telescopes) — are essential to study its properties.

Soon, through the combined power of ALMA and other millimetre-wavelength telescopes across the globe, we may become much better acquainted with the monstrous heart of our galaxy. The Global mm-VLBI Array is currently investigating the process of how gas, dust and other material accrete onto supermassive black holes, as well as the formation of the extremely fast gas jets that flow from them. The Event Horizon Telescope, on the other hand, is working towards a different goal: imaging the shadow of the event horizon, the point of no return.

This is the second post of a blog series following the EHT and GMVA projects. Stay tuned to find out more about why the event horizon of a black hole is so interesting!

Event Horizon Telescope website
GMVA website
BlackHoleCam — an EU-funded project to finally image, measure and understand astrophysical black holes
Read more about ALMA
Find out more about ALMA’s VLBI capabilities

See the full article here .

Please help promote STEM in your local schools.
STEM Icon

Stem Education Coalition
Visit ESO in Social Media-

Facebook

Twitter

YouTube

ESO Bloc Icon

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

ESO LaSilla
ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

ESO VLT
VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO Vista Telescope
ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO NTT
ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

ESO VLT Survey telescope
VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

ALMA Array
ALMA on the Chajnantor plateau at 5,000 metres

ESO E-ELT
ESO/E-ELT to be built at Cerro Armazones at 3,060 m

ESO APEX
APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert

Advertisements