From Many Worlds: “Ocean Worlds: Enceladus Looks Increasingly Habitable, and Europa’s Ocean Under the Ice More Accessible to Sample”

NASA NExSS bloc

NASA NExSS

Many Words icon

Many Worlds

2017-04-13
Marc Kaufman

1
NASA’s Cassini spacecraft completed its deepest-ever dive through the icy plume of Enceladus on Oct. 28, 2015. (NASA/JPL-Caltech)

It wasn’t that long ago that Enceladus, one of 53 moons of Saturn, was viewed as a kind of ho-hum object of no great importance. It was clearly frozen and situated in a magnetic field maelstrom caused by the giant planet nearby and those saturnine rings.

That view was significantly modified in 2005 when scientists first detected signs of the icy plumes coming out of the bottom of the planet. What followed was the discovery of warm fractures (the tiger stripes) near the moon’s south pole, numerous flybys and fly-throughs with the spacecraft Cassini, and by 2015 the announcement that the moon had a global ocean under its ice.

NASA/ESA/ASI Cassini Spacecraft

Now the Enceladus story has taken another decisive turn with the announcement that measurements taken during Cassini’s final fly-through captured the presence of molecular hydrogen.

To planetary and Earth scientists, that particular hydrogen presence quite clearly means that the water shooting out from Enceladus is coming from an interaction between water and warmed rock minerals at the bottom of the moon’s ocean– and possibly from within hydrothermal vents.

These chimney-like hydrothermal vents at the bottom of our oceans — coupled with a chemical mixture of elements and compounds similar to what has been detected in the plumes — are known on Earth as prime breeding grounds for life. One important reason why is that the hydrogen and hydrogen compounds produced in these settings are a source of energy, or food, for microbes.

A logical conclusion of these findings: the odds that Enceladus harbors forms of simple life have increased significantly.

To be clear, this is no discovery of extraterrestrial life. But it is an important step in the astrobiological quest to find life beyond Earth.

“The key here is that Enceladus can produce fuel that could be used by biology,” said Mary Voytek, NASA’s senior scientist for astrobiology, referring to the detection of hydrogen.

2
This graphic illustrates how scientists on NASA’s Cassini mission think water interacts with rock at the bottom of the ocean of Saturn’s icy moon Enceladus, producing hydrogen gas (H2). It remains unclear whether the interactions are taking place in hydrothermal vents or more diffusely across the ocean. (NASA)

“So now on this moon we have many of the components associated with life — water, a source of energy and many of the important chemical building blocks. Nothing coming from Cassini will tell is if there is biology there, but we definitely have found another important piece of evidence of possible habitability.”

The finding of molecular hydrogen (H2 rather a single hydrogen atom) in the Enceladus plumes was described in a Science paper lead by authors Hunter Waite and Christopher Glein of the Southwest Research Institute, headquartered in San Antonio.

They went through a number of possible sources of the hydrogen and then concluded that the clearly most likely one was that chemical interaction of cool water and hot rocks — both heated by tidal forces in the complex Saturn system — at the bottom of the global ocean.

“We previously thought that the water was heated but now we have evidence that the rocks are as well,” Waite told me. “And the evidence suggests that the rock is quite porous, which means that water is seeping through on a large scale and producing these chemical interactions that have a byproduct of hydrogen.”

4
The plumes of Enceladus originate in the long tiger stripe fractures of the south polar region pictured here. (Cassini Imaging Team, SSI, JPL, ESA, NASA)

He said that the process could be taking place in and around those chimney-like hydrothermal vents, or it could be more diffuse across the ocean floor. The vent scenario, he said, was “easier to envision.”

What’s more, he said, the conditions during this water-rock interaction are favorable for the production of the gas methane, which has been detected in the Enceladus plume.

This is another tantalizing part of the Enceladus plume story because the earliest lifeforms on Earth are thought to have both consumed and expelled that gas. At this point, however, Waite said there is no way to determine how the methane was formed, which would be a key finding if and when it is made.

“Our results leave us agnostic on the presence of life,” he said. “We don’t have enough information for that.”

“But we now can make a strong case that we have a very habitable environment on this moon.” It’s such a strong case, he said, that it would be almost as scientifically interesting to not find life there than to detect it.

One of the more interesting remaining puzzles is why the hydrogen is present in the plume in such unexpectedly substantial (though initially difficult to detect) amounts. If there was a large microbial community under the ice, then it could plausibly be argued that there wouldn’t be so much hydrogen left if they were consuming it.

The possibilities: Waite said that it could mean there is just a lot of “food” being produced for potential microbes to survive on in the ocean, or that other factors limit the microbe population size. Or, of course, it could mean that there are no microbes at all to consume the hydrogen food.

5
Astronomers have twice found evidence of a plume of water vapor coming from the same location. Both plumes, photographed in UV light by Hubble, were seen in silhouette as the moon passed in front of Jupiter. (NASA/ESA/STScI/USGS)
[Also shown today in a post from NASA/ESA Hubble]

News of the Enceladus discovery came on the same day that other researchers announced that strong evidence of detecting a similar plume on Jupiter’s moon Europa using the Hubble Space Telescope.

This was not the first plume seen on that larger moon of Jupiter, but is perhaps the most important because it appeared to be was spitting out water vapor in the same location as an earlier plume. In other words, it may well be the site of a consistently or frequently appearing geyser.

“The plumes on Enceladus are associated with hotter regions,” said William Sparks of the Space Telescope Science Institute. “So after Hubble imaged this new plume-like feature on Europa, we looked at that location on the Galileo thermal map. We discovered that Europa’s plume candidate is sitting right on the thermal anomaly,”

Sparks led the Hubble plume studies in both 2014 and 2016, and their paper was published in The Astrophysical Journal. He said he was quite confident, though not completely confident of the result because of the limits of the Hubble resolution. A 100 percent confirmation, he said, will take more observations.

Since Europa has long been seen as a strong candidate for harboring extraterrestrial life, this is extraordinarily good news for those hoping to test that hypothesis. Now, rather than devising a way to blast through miles of ice to get to Europa’s large, salty and billions-of-years-old ocean, scientists can potentially learn about the composition of water by studying the plume — as has happened at Enceladus.

As their paper concluded, “If borne out with future observations, these indications of an active European surface, with potential access to liquid water at depth, bolster the case for Europa’s potential habitability and for future sampling of erupted material by spacecraft.”

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

About Many Worlds

There are many worlds out there waiting to fire your imagination.

Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

About NExSS

The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

Advertisements