From ALMA: “ALMA Captures Explosive Star Birth”

ESO/NRAO/NAOJ ALMA Array
ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
ALMA

07 April 2017
Contacts

John Bally
University of Colorado, USA
Email: john.bally@Colorado.EDU

Nicolás Lira T.
Press Coordinator
Joint ALMA Observatory
Santiago, Chile
Tel: +56 2 24 67 65 19
Cell: +56 9 94 45 77 26
Email: nicolas.lira@alma.cl

Richard Hook
Public Information Officer, ESO

Garching bei München, Germany

Tel: +49 89 3200 6655

Cell: +49 151 1537 3591
Email: rhook@eso.org

Masaaki Hiramatsu

Education and Public Outreach Officer, NAOJ Chile
Observatory
Tokyo, Japan

Tel: +81 422 34 3630

E-mail: hiramatsu.masaaki@nao.ac.jp

Charles E. Blue
Public Information Officer
National Radio Astronomy Observatory
Charlottesville, Virginia, USA
Tel: +1 434 296 0314
Cell: +1 202 236 6324
E-mail: cblue@nrao.edu

1
Stellar explosions are most often associated with supernovae, the spectacular deaths of stars. But new ALMA observations of the Orion Nebula complex provide insights into explosions at the other end of the stellar life cycle, star birth. Astronomers captured these dramatic images of the remains of a 500-year-old explosion as they explored the firework-like debris from the birth of a group of massive stars, demonstrating that star formation can be a violent and explosive process too. The colours in the ALMA data represent the relative Doppler shifting of the millimetre-wavelength light emitted by carbon monoxide gas. The blue colour in the ALMA data represents gas approaching at the highest speeds; the red colour is from gas moving toward us more slowly. The background image includes optical and near-infrared imaging from both the Gemini South and ESO Very Large Telescope. The famous Trapezium Cluster of hot young stars appears towards the bottom of this image. The ALMA data do not cover the full image shown here. Credit: ALMA (ESO/NAOJ/NRAO), J. Bally/H. Drass et al.

3
In one of the most detailed astronomical images ever produced, NASA/ESA’s Hubble Space Telescope captured an unprecedented look at the Orion Nebula. … This extensive study took 105 Hubble orbits to complete. All imaging instruments aboard the telescope were used simultaneously to study Orion. The Advanced Camera mosaic covers approximately the apparent angular size of the full moon.

5
Photo taken by Rogelio Bernal Andreo in October 2010 of the Orion constellation showing the surrounding nebulas of the Orion Molecular Cloud complex. Also captured is the red supergiant Betelgeuse (top left) and the famous belt of Orion composed of the OB stars Altitak, Alnilam and Mintaka. To the bottom right can be found the star Rigel. The red crescent shape is Barnard’s Loop. The photograph appeared as the Astronomy Picture of the Day on October 23, 2010.
Date 23 August 2012
Source http://deepskycolors.com/astro/JPEG/RBA_Orion_HeadToToes.jpg

Star birth can be a violent and explosive event, as dramatically illustrated in new ALMA images.

Around 500 years ago, a pair of adolescent protostars had a perilously close encounter that blasted their stellar nursery apart.

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have examined the widely scattered debris from this explosive event, gaining new insights into the sometimes-fierce relationship among sibling stars.

Shortly after starting to form some 100,000 years ago, several protostars in the Orion Molecular Cloud 1 (OMC-1), a dense and active star factory about 1,500 light-years from Earth just behind the Orion Nebula, latched onto each other gravitationally and gradually drew closer.

Eventually, two of these stars either grazed each other or collided, triggering a powerful eruption that launched other nearby protostars and hundreds of giant streamers of dust and gas into interstellar space at speeds greater than 150 kilometers per second. This cataclysmic interaction released as much energy as our Sun emits over the course of 10 million years.

Today, the remains of this spectacular explosion are visible from Earth.

2
Credit: ALMA (ESO/NAOJ/NRAO), J. Bally

“What we see in this once calm stellar nursery is a cosmic version of a fireworks display, with giant streamers rocketing off in all directions,” said John Bally with the University of Colorado and lead author on a paper published in the Astrophysical Journal.

3
Stellar explosions are most often associated with supernovae, the spectacular deaths of stars. But new ALMA observations of the Orion Nebula complex provide insights into explosions at the other end of the stellar life cycle, star birth. Astronomers captured these dramatic images of the remains of a 500-year-old explosion as they explored the firework-like debris from the birth of a group of massive stars, demonstrating that star formation can be a violent and explosive process too. The colours in the ALMA data represent the relative Doppler shifting of the millimetre-wavelength light emitted by carbon monoxide gas. The blue colour in the ALMA data represents gas approaching at the highest speeds; the red colour is from gas moving toward us more slowly. The background is an infrared image from the HAWK-I camera on ESO’s Very Large Telescope. The ALMA data only cover the region marked by the box. Credit:ALMA (ESO/NAOJ/NRAO), J. Bally/H. Drass et al.

ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

ESO HAWK-I

Groups of stars such as those in OMC-1 are born when a cloud of gas hundreds of times more massive than our Sun begins to collapse under its own gravity. In the densest regions, protostars form and begin to drift about randomly. Over time, this random motion can dampen, which allows some of the stars to fall toward a common center of gravity, usually dominated by a particularly large protostar.

If these stars draw too close to each other before they drift away into the galaxy, violent interactions can occur. According to the researchers, such explosions are expected to be relatively short lived, with the remnants like those seen by ALMA lasting only centuries.

“Though fleeting, protostellar explosions may be relatively common,” said Bally. “By destroying their parent cloud, as we see in OMC-1, such explosions may also help to regulate the pace of star formation in these giant molecular clouds.”

Bally and his team observed this feature previously with the Gemini-South telescope in Chile.

Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

These earlier images, taken in the near infrared, reveal the remarkable structure of the streamers, which extend nearly a light-year from end to end.

Hints of the explosive nature of this outflow were first uncovered in 2009 with the Submillimeter Array in Hawaii.

CfA Submillimeter Array Mauna Kea, Hawaii, USA

The new ALMA data, however, provide much greater clarity, unveiling important details about the distribution and high-velocity motion of the carbon monoxide (CO) gas inside the streamers. This helps astronomers understand the underlying force of the blast and the impact such events could have on star formation across the galaxy.

“People most often associate stellar explosions with ancient stars, like a nova eruption on the surface of a decaying star or the even more spectacular supernova death of an extremely massive star,” Bally says. “ALMA has given us new insights into explosions on the other end of the stellar life cycle, star birth.”

See the full article here .

Please help promote STEM in your local schools.
STEM Icon
Stem Education Coalition

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

NRAO Small
ESO 50 Large
NAOJ

Advertisements